Skip to main content

Implementation of the Empirical Mode Decomposition (EMD) and its variations

Project description

codecov BuildStatus DocStatus Codacy ko-fi

PyEMD

Links

Introduction

This is yet another Python implementation of Empirical Mode Decomposition (EMD). The package contains many EMD variations and intends to deliver more in time.

EMD variations:

  • Ensemble EMD (EEMD),
  • "Complete Ensemble EMD" (CEEMDAN)
  • different settings and configurations of vanilla EMD.
  • Image decomposition (EMD2D & BEMD) (experimental, no support)

PyEMD allows to use different splines for envelopes, stopping criteria and extrema interpolation.

Available splines:

  • Natural cubic [default]
  • Pointwise cubic
  • Akima
  • Linear

Available stopping criteria:

  • Cauchy convergence [default]
  • Fixed number of iterations
  • Number of consecutive proto-imfs

Extrema detection:

  • Discrete extrema [default]
  • Parabolic interpolation

Installation

Recommended

Simply download this directory either directly from GitHub, or using command line:

$ git clone https://github.com/laszukdawid/PyEMD

Then go into the downloaded project and run from command line:

$ python setup.py install

PyPi

Packaged obtained from PyPi is/will be slightly behind this project, so some features might not be the same. However, it seems to be the easiest/nicest way of installing any Python packages, so why not this one?

$ pip install EMD-signal

Example

More detailed examples are included in the documentation or in the PyEMD/examples.

EMD

In most cases default settings are enough. Simply import EMD and pass your signal to instance or to emd() method.

from PyEMD import EMD
import numpy as np

s = np.random.random(100)
emd = EMD()
IMFs = emd(s)

The Figure below was produced with input: $S(t) = cos(22 \pi t^2) + 6t^2$

simpleExample

EEMD

Simplest case of using Ensemble EMD (EEMD) is by importing EEMD and passing your signal to the instance or eemd() method.

Windows: Please don't skip the if __name__ == "__main__" section.

from PyEMD import EEMD
import numpy as np

if __name__ == "__main__":
    s = np.random.random(100)
    eemd = EEMD()
    eIMFs = eemd(s)

CEEMDAN

As with previous methods, there is also simple way to use CEEMDAN.

Windows: Please don't skip the if __name__ == "__main__" section.

from PyEMD import CEEMDAN
import numpy as np

if __name__ == "__main__":
    s = np.random.random(100)
    ceemdan = CEEMDAN()
    cIMFs = ceemdan(s)

Visualisation

The package contain a simple visualisation helper that can help, e.g., with time series and instantaneous frequencies.

import numpy as np
from PyEMD import EMD, Visualisation

t = np.arange(0, 3, 0.01)
S = np.sin(13*t + 0.2*t**1.4) - np.cos(3*t)

# Extract imfs and residue
# In case of EMD
emd = EMD()
emd.emd(S)
imfs, res = emd.get_imfs_and_residue()

# In general:
#components = EEMD()(S)
#imfs, res = components[:-1], components[-1]

vis = Visualisation()
vis.plot_imfs(imfs=imfs, residue=res, t=t, include_residue=True)
vis.plot_instant_freq(t, imfs=imfs)
vis.show()

EMD2D/BEMD

Unfortunately, this is Experimental and we can't guarantee that the output is meaningful. The simplest use is to pass image as monochromatic numpy 2D array. Sample as with the other modules one can use the default setting of an instance or, more explicitly, use the emd2d() method.

from PyEMD.EMD2d import EMD2D  #, BEMD
import numpy as np

x, y = np.arange(128), np.arange(128).reshape((-1,1))
img = np.sin(0.1*x)*np.cos(0.2*y)
emd2d = EMD2D()  # BEMD() also works
IMFs_2D = emd2d(img)

F.A.Q

Why is EEMD/CEEMDAN so slow?

Unfortunately, that's their nature. They execute EMD multiple times every time with slightly modified version. Added noise can cause a creation of many extrema which will decrease performance of the natural cubic spline. For some tweaks on how to deal with that please see Speedup tricks in the documentation.

Contact

Feel free to contact me with any questions, requests or simply to say hi. It's always nice to know that I've helped someone or made their work easier. Contributing to the project is also acceptable and warmly welcomed.

Contact me either through gmail (laszukdawid @ gmail) or search me through your favourite web search.

Citation

If you found this package useful and would like to cite it in your work please use the following structure:

@misc{pyemd,
  author = {Laszuk, Dawid},
  title = {Python implementation of Empirical Mode Decomposition algorithm},
  year = {2017},
  publisher = {GitHub},
  journal = {GitHub Repository},
  howpublished = {\url{https://github.com/laszukdawid/PyEMD}},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

EMD-signal-0.2.12.tar.gz (48.0 kB view details)

Uploaded Source

Built Distribution

EMD_signal-0.2.12-py2.py3-none-any.whl (41.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file EMD-signal-0.2.12.tar.gz.

File metadata

  • Download URL: EMD-signal-0.2.12.tar.gz
  • Upload date:
  • Size: 48.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.5

File hashes

Hashes for EMD-signal-0.2.12.tar.gz
Algorithm Hash digest
SHA256 87ab5c4009d136763b73d849b083571f5b6de504727a8cb89c67c8216a913f2b
MD5 8aaf5f45858ae31cb1741c1db5f51254
BLAKE2b-256 ced9b9b1ac677394e507db4defdd6a03bb50dbb215c59c5e77ab0e26876cdbd0

See more details on using hashes here.

File details

Details for the file EMD_signal-0.2.12-py2.py3-none-any.whl.

File metadata

  • Download URL: EMD_signal-0.2.12-py2.py3-none-any.whl
  • Upload date:
  • Size: 41.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.5

File hashes

Hashes for EMD_signal-0.2.12-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 378c1be9fa03c3baaa3f14aa41d67346b25cdce673e9444b98bd62fa08ee323a
MD5 4fa17eb945aaf7302bb9d495f7940304
BLAKE2b-256 59e06d88c70d5fbea1c991258fb10f8e8d09ddff96ae9b37519081be57606a0c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page