Skip to main content

Implementation of the Empirical Mode Decomposition (EMD) and its variations

Project description

codecov BuildStatus DocStatus Codacy ko-fi

PyEMD

Links

Introduction

This is yet another Python implementation of Empirical Mode Decomposition (EMD). The package contains many EMD variations and intends to deliver more in time.

EMD variations:

  • Ensemble EMD (EEMD),
  • "Complete Ensemble EMD" (CEEMDAN)
  • different settings and configurations of vanilla EMD.
  • Image decomposition (EMD2D & BEMD) (experimental, no support)

PyEMD allows to use different splines for envelopes, stopping criteria and extrema interpolation.

Available splines:

  • Natural cubic [default]
  • Pointwise cubic
  • Akima
  • Linear

Available stopping criteria:

  • Cauchy convergence [default]
  • Fixed number of iterations
  • Number of consecutive proto-imfs

Extrema detection:

  • Discrete extrema [default]
  • Parabolic interpolation

Installation

Recommended

Simply download this directory either directly from GitHub, or using command line:

$ git clone https://github.com/laszukdawid/PyEMD

Then go into the downloaded project and run from command line:

$ python setup.py install

PyPi

Packaged obtained from PyPi is/will be slightly behind this project, so some features might not be the same. However, it seems to be the easiest/nicest way of installing any Python packages, so why not this one?

$ pip install EMD-signal

Example

More detailed examples are included in the documentation or in the PyEMD/examples.

EMD

In most cases default settings are enough. Simply import EMD and pass your signal to instance or to emd() method.

from PyEMD import EMD
import numpy as np

s = np.random.random(100)
emd = EMD()
IMFs = emd(s)

The Figure below was produced with input: $S(t) = cos(22 \pi t^2) + 6t^2$

simpleExample

EEMD

Simplest case of using Ensemble EMD (EEMD) is by importing EEMD and passing your signal to the instance or eemd() method.

Windows: Please don't skip the if __name__ == "__main__" section.

from PyEMD import EEMD
import numpy as np

if __name__ == "__main__":
    s = np.random.random(100)
    eemd = EEMD()
    eIMFs = eemd(s)

CEEMDAN

As with previous methods, there is also simple way to use CEEMDAN.

Windows: Please don't skip the if __name__ == "__main__" section.

from PyEMD import CEEMDAN
import numpy as np

if __name__ == "__main__":
    s = np.random.random(100)
    ceemdan = CEEMDAN()
    cIMFs = ceemdan(s)

Visualisation

The package contain a simple visualisation helper that can help, e.g., with time series and instantaneous frequencies.

import numpy as np
from PyEMD import EMD, Visualisation

t = np.arange(0, 3, 0.01)
S = np.sin(13*t + 0.2*t**1.4) - np.cos(3*t)

# Extract imfs and residue
# In case of EMD
emd = EMD()
emd.emd(S)
imfs, res = emd.get_imfs_and_residue()

# In general:
#components = EEMD()(S)
#imfs, res = components[:-1], components[-1]

vis = Visualisation()
vis.plot_imfs(imfs=imfs, residue=res, t=t, include_residue=True)
vis.plot_instant_freq(t, imfs=imfs)
vis.show()

EMD2D/BEMD

Unfortunately, this is Experimental and we can't guarantee that the output is meaningful. The simplest use is to pass image as monochromatic numpy 2D array. Sample as with the other modules one can use the default setting of an instance or, more explicitly, use the emd2d() method.

from PyEMD.EMD2d import EMD2D  #, BEMD
import numpy as np

x, y = np.arange(128), np.arange(128).reshape((-1,1))
img = np.sin(0.1*x)*np.cos(0.2*y)
emd2d = EMD2D()  # BEMD() also works
IMFs_2D = emd2d(img)

F.A.Q

Why is EEMD/CEEMDAN so slow?

Unfortunately, that's their nature. They execute EMD multiple times every time with slightly modified version. Added noise can cause a creation of many extrema which will decrease performance of the natural cubic spline. For some tweaks on how to deal with that please see Speedup tricks in the documentation.

Contact

Feel free to contact me with any questions, requests or simply to say hi. It's always nice to know that I've helped someone or made their work easier. Contributing to the project is also acceptable and warmly welcomed.

Contact me either through gmail (laszukdawid @ gmail) or search me through your favourite web search.

Citation

If you found this package useful and would like to cite it in your work please use the following structure:

@misc{pyemd,
  author = {Laszuk, Dawid},
  title = {Python implementation of Empirical Mode Decomposition algorithm},
  year = {2017},
  publisher = {GitHub},
  journal = {GitHub Repository},
  howpublished = {\url{https://github.com/laszukdawid/PyEMD}},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

EMD-signal-0.2.13.tar.gz (48.2 kB view details)

Uploaded Source

Built Distribution

EMD_signal-0.2.13-py2.py3-none-any.whl (41.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file EMD-signal-0.2.13.tar.gz.

File metadata

  • Download URL: EMD-signal-0.2.13.tar.gz
  • Upload date:
  • Size: 48.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.24.0 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for EMD-signal-0.2.13.tar.gz
Algorithm Hash digest
SHA256 1365b54e245bb8e022c54cd1dc3167f938a2cd583217809e757f8a30093462d8
MD5 7439306fb7b30fddce8eb3387285aecb
BLAKE2b-256 616c6b4fdeb12fd6470d54a4542d37a881bc55d24ab43a84843c3226e4dadc56

See more details on using hashes here.

File details

Details for the file EMD_signal-0.2.13-py2.py3-none-any.whl.

File metadata

  • Download URL: EMD_signal-0.2.13-py2.py3-none-any.whl
  • Upload date:
  • Size: 41.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.24.0 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for EMD_signal-0.2.13-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d371ff3a49d305d208930f75e6ee37a4975d3240513da1b08a43dec2cd22fcaa
MD5 b02e843cdd8fb57fb3ec5ff38f08927f
BLAKE2b-256 b624b4abe96bca9af04bea8ff39daa752caafe1ed471a82d895fa3c1c1b4d089

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page