Skip to main content

Implementation of Empirical Mode Decomposition (EMD) and its variations

Project description

codecov BuildStatus DocStatus

PyEMD

Introduction

This is yet another Python implementation of Empirical Mode Decomposition (EMD). The package contains many EMD variations and intends to deliver more in time.

EMD variations:
  • Ensemble EMD (EEMD),

  • Image decomposotion (EMD2D),

  • different settings and configurations of vanilla EMD.

PyEMD allows to use different splines for envelopes, stopping criteria and extrema interpolation.

Available splines:
  • Natural cubic [default]

  • Pointwise cubic

  • Akima

  • Linear

Available stopping criteria:
  • Cauchy convergence [default]

  • Fixed number of iterations

  • Number of consecutive proto-imfs

Extrema detection:
  • Discrete extrema [default]

  • Parabolic interpolation

Installation

PyPi

Packaged obtained from PyPi is/will be slightly behind this project, so some features might not be the same. However, it seems to be the easiest/nicest way of installing any Python packages, so why not this one?

$ pip install EMD-signal

Example

More detailed examples are included in documentation.

EMD

In most cases default settings are enough. Simply import EMD and pass your signal to instance or to emd() method.

from PyEMD import EMD
import numpy as np

s = np.random.random(100)
emd = EMD()
IMFs = emd(s)

The Figure below was produced with input: \(S(t) = cos(22 \pi t^2) + 6t^2\)

simpleExample

EEMD

Simplest case of using Esnembld EMD (EEMD) is by importing EEMD and passing your signal to the instance or eemd() method.

from PyEMD import EEMD
import numpy as np

s = np.random.random(100)
eemd = EEMD()
eIMFs = eemd(s)

EMD2D

Simplest case is to pass image as monochromatic numpy 2D array. As with other modules one can use default setting of instance or more expliclity use emd2d() method.

from PyEMD import EMD2D
import numpy as np

x, y = np.arange(128), np.arange(128).reshape((-1,1))
img = np.sin(0.1*x)*np.cos(0.2*y)
emd2d = EMD2D()
IMFs_2D = emd2d(img)

Contact

Feel free to contact me with any questions, requests or simply saying hi. It’s always nice to know that I might have contributed to saving someone’s time or that I might improve my skills/projects.

Contact me either through gmail (laszukdawid @ gmail) or search me favourite web search.

Citation

If you found this package useful and would like to cite it in your work please use following structure:

Dawid Laszuk (2017-), Python implementation of Empirical Mode Decomposition algorithm. http://www.laszukdawid.com/codes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

EMD-signal-0.2.3.tar.gz (37.0 kB view details)

Uploaded Source

File details

Details for the file EMD-signal-0.2.3.tar.gz.

File metadata

  • Download URL: EMD-signal-0.2.3.tar.gz
  • Upload date:
  • Size: 37.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for EMD-signal-0.2.3.tar.gz
Algorithm Hash digest
SHA256 c947c17dc952621c686529fc24c3f0d844f5dc44d0e98ec833d8268ea282daee
MD5 16cde53646a31647cbec8bf39641a31b
BLAKE2b-256 370355d83cc2e1052bb352b4450ec41aad1e58aaddbadc32b8bbb28a99b2d011

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page