Skip to main content

Implementation of Empirical Mode Decomposition (EMD) and its variations

Project description

[![codecov](https://codecov.io/gh/laszukdawid/PyEMD/branch/master/graph/badge.svg)](https://codecov.io/gh/laszukdawid/PyEMD)
[![BuildStatus](https://travis-ci.org/laszukdawid/PyEMD.png?branch=master)](https://travis-ci.org/laszukdawid/PyEMD)
[![DocStatus](https://readthedocs.org/projects/pyemd/badge/?version=latest)](https://pyemd.readthedocs.io/)
[![Codacy](https://api.codacy.com/project/badge/Grade/5385d5ddc8e84908bd4e38f325443a21)](https://www.codacy.com/app/laszukdawid/PyEMD?utm_source=github.com&utm_medium=referral&utm_content=laszukdawid/PyEMD&utm_campaign=badger)

# PyEMD

## Links

- HTML documentation: <https://pyemd.readthedocs.org>
- Issue tracker: <https://github.com/laszukdawid/pyemd/issues>
- Source code repository: <https://github.com/laszukdawid/pyemd>

## Introduction

This is yet another Python implementation of Empirical Mode
Decomposition (EMD). The package contains many EMD variations and
intends to deliver more in time.

### EMD variations:
* Ensemble EMD (EEMD),
* "Complete Ensemble EMD" (CEEMDAN)
* different settings and configurations of vanilla EMD.
* Image decomposition (EMD2D & BEMD) (experimental)

*PyEMD* allows to use different splines for envelopes, stopping criteria
and extrema interpolation.

### Available splines:
* Natural cubic [default]
* Pointwise cubic
* Akima
* Linear

### Available stopping criteria:
* Cauchy convergence [default]
* Fixed number of iterations
* Number of consecutive proto-imfs

### Extrema detection:
* Discrete extrema [default]
* Parabolic interpolation

## Installation

### Recommended

Simply download this directory either directly from GitHub, or using
command line:

> \$ git clone <https://github.com/laszukdawid/PyEMD>

Then go into the downloaded project and run from command line:

> \$ python setup.py install

### PyPi

Packaged obtained from PyPi is/will be slightly behind this project, so
some features might not be the same. However, it seems to be the
easiest/nicest way of installing any Python packages, so why not this
one?

> \$ pip install EMD-signal

## Example

More detailed examples are included in the
[documentation](https://pyemd.readthedocs.io/en/latest/examples.html) or
in the
[PyEMD/examples](https://github.com/laszukdawid/PyEMD/tree/master/example).

### EMD

In most cases default settings are enough. Simply import `EMD` and pass
your signal to instance or to `emd()` method.

```python
from PyEMD import EMD
import numpy as np

s = np.random.random(100)
emd = EMD()
IMFs = emd(s)
```

The Figure below was produced with input:
$S(t) = cos(22 \pi t^2) + 6t^2$

![simpleExample](https://github.com/laszukdawid/PyEMD/raw/master/example/simple_example.png?raw=true)

### EEMD

Simplest case of using Ensemble EMD (EEMD) is by importing `EEMD` and
passing your signal to the instance or `eemd()` method.

```python
from PyEMD import EEMD
import numpy as np

s = np.random.random(100)
eemd = EEMD()
eIMFs = eemd(s)
```

### CEEMDAN

As with previous methods, there is also simple way to use `CEEMDAN`.

```python
from PyEMD import CEEMDAN
import numpy as np

s = np.random.random(100)
ceemdan = CEEMDAN()
cIMFs = ceemdan(s)
```

### Visualisation

The package contain a simple visualisation helper that can help, e.g., with time series and instantaneous frequencies.

```python
import numpy as np
from PyEMD import EMD, Visualisation

t = np.arange(0, 3, 0.01)
S = np.sin(13*t + 0.2*t**1.4) - np.cos(3*t)

emd = EMD()
emd.emd(S)
imfs, res = emd.get_imfs_and_residue()

vis = Visulisation(emd)
vis.plot_imfs()
vis.plot_instant_freq(t)
vis.show()
```

### EMD2D/BEMD

*Unfortunately, this is Experimental and we can't guarantee that the output is meaningful.*
The simplest use is to pass image as monochromatic numpy 2D array. Sample as
with the other modules one can use the default setting of an instance or, more explicitly,
use the `emd2d()` method.

```python
from PyEMD import EMD2D #, BEMD
import numpy as np

x, y = np.arange(128), np.arange(128).reshape((-1,1))
img = np.sin(0.1*x)*np.cos(0.2*y)
emd2d = EMD2D() # BEMD() also works
IMFs_2D = emd2d(img)
```

## Contact

Feel free to contact me with any questions, requests or simply to say
*hi*. It's always nice to know that I one's work have eased others and saved
someone's time. Contributing to the project is also acceptable.

Contact me either through gmail (laszukdawid @ gmail) or search me through your
favourite web search.

### Citation

If you found this package useful and would like to cite it in your work
please use following structure:

Dawid Laszuk (2017-), **Python implementation of Empirical Mode
Decomposition algorithm**. <http://www.laszukdawid.com/codes>.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

EMD-signal-0.2.6.tar.gz (40.9 kB view details)

Uploaded Source

Built Distribution

EMD_signal-0.2.6-py2.py3-none-any.whl (36.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file EMD-signal-0.2.6.tar.gz.

File metadata

  • Download URL: EMD-signal-0.2.6.tar.gz
  • Upload date:
  • Size: 40.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for EMD-signal-0.2.6.tar.gz
Algorithm Hash digest
SHA256 ee32bf978fb61aa02e3b68d89b9eefabc8674eb9bb68bc32e50fce14b25e9da5
MD5 4d596056aec8f9df94e423cdd4286018
BLAKE2b-256 8f089313243c9aff32f6778163a3cfdc3aa8d943c927797432f0a0a8f52ad821

See more details on using hashes here.

File details

Details for the file EMD_signal-0.2.6-py2.py3-none-any.whl.

File metadata

  • Download URL: EMD_signal-0.2.6-py2.py3-none-any.whl
  • Upload date:
  • Size: 36.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for EMD_signal-0.2.6-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 967a035bdfcb6836b6f84fe39feb11b09a9e76edbd2a6fb45dcdbd67c0722002
MD5 30363d3f8e583a0e3846f50bea978f84
BLAKE2b-256 108d74c8737f76478852510ef7f83f7431266fc100344c2f6eeaa27be7e938fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page