Skip to main content

A Python package implementing TOPSIS for MCDM

Project description

Ekaspreet-topsis-102017078

Topsis in Python

Author: Ekaspreet 102017078
Maintainer: Ekaspreet ekaspreet0209@gmail.com.

TOPSIS: It is a for Multiple Criteria Decision Making,A Technique for Order Preference by Similarity to Ideal
More details at wikipedia.


In Command Prompt

>> topsis data.csv "1,1,1,1" "+,+,-,+" result.csv

Input file (data.csv)

Model Correlation R2 RMSE Accuracy
M1 0.79 0.62 1.25 60.89
M2 0.66 0.44 2.89 63.07
M3 0.56 0.31 1.57 62.87
M4 0.82 0.67 2.68 70.19
M5 0.75 0.56 1.3 80.39

Weights (weights) is not already normalised will be normalised later in the code.

Information of positive(+) or negative(-) impact criteria should be provided in impacts.


Output file (result.csv)

Model Correlation R2 RMSE Accuracy Score Rank
M1 0.79 0.62 1.25 60.89 0.7722 2
M2 0.66 0.44 2.89 63.07 0.2255 5
M3 0.56 0.31 1.57 62.87 0.4388 4
M4 0.82 0.67 2.68 70.19 0.5238 3
M5 0.75 0.56 1.3 80.39 0.8113 1

The output file contains columns of input file along with two additional columns having **Score** and **Rank**

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Ekaspreet-topsis-102017078-1.0.1.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file Ekaspreet-topsis-102017078-1.0.1.tar.gz.

File metadata

File hashes

Hashes for Ekaspreet-topsis-102017078-1.0.1.tar.gz
Algorithm Hash digest
SHA256 b24815cec11f7862f367db4f4746916bbec680a49c24ce33e0425e04224f0379
MD5 8b1d880cedb33e88c34fd3f448feb1dd
BLAKE2b-256 2d2e2d9d85fc630e7fd384321e3bdb695262c532aeabb67d948b58bdbdb8cb6a

See more details on using hashes here.

File details

Details for the file Ekaspreet_topsis_102017078-1.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for Ekaspreet_topsis_102017078-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3583030b61cdba8d37db6f4f18e2f0ce7edb4bd79f72d41f14155702e5e23587
MD5 8006019f6a9e2e84d59755aad38223ae
BLAKE2b-256 53d02c78d83fe7a399cd0d4a76f5467ff3740acd967aa541ac0eb308d53d132d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page