Skip to main content

Python bindings for Elo-MRR

Project description

Elo-MMR-Py

Python bindings for Elo-MRR.

Installation

You can install using pip. This is the easiest way to install the package and its dependencies.

Install from PyPI

To install the latest released version from PyPI, run the following command:

pip install Elo-MMR-Py

This will download and install the latest version of Elo-MMR-Py from PyPI.

Install from Source

To install Elo-MMR-Py directly from the source code using Git, run:

pip install git+https://github.com/aropan/Elo-MMR-Py.git

Usage

After installation, you can import and use Elo-MMR-Py in your Python projects:

from elo_mmr_py import Contest, rate

contests = [
    Contest(standings=[('player_1', 0, 0), ('player_2', 1, 1), ('player_3', 2, 2)]),
    Contest(standings=[('player_1', 0, 1), ('player_2', 0, 1), ('player_3', 2, 2)]),
    Contest(standings=[('player_1', 0, 0), ('player_2', 1, 2), ('player_3', 1, 2)]),
    Contest(standings=[('player_4', 0, 0), ('player_1', 1, 1), ('player_2', 2, 2), ('player_3', 3, 3)]),
    Contest(standings=[('player_4', 0, 0), ('player_1', 1, 1), ('player_2', 2, 2), ('player_3', 3, 3)]),
]
rate(contests)

Output for example above:

{'player_1': Player(name='player_1',
                    rating=1675,
                    events=[PyPlayerEvent(contest_index=0, rating_mu=1705, rating_sig=171, perf_score=1744, place=0),
                            PyPlayerEvent(contest_index=1, rating_mu=1663, rating_sig=130, perf_score=1618, place=0),
                            PyPlayerEvent(contest_index=2, rating_mu=1686, rating_sig=111, perf_score=1728, place=0),
                            PyPlayerEvent(contest_index=3, rating_mu=1678, rating_sig=100, perf_score=1660, place=1),
                            PyPlayerEvent(contest_index=4, rating_mu=1675, rating_sig=94, perf_score=1666, place=1)]),
 'player_2': Player(name='player_2',
                    rating=1483,
                    events=[PyPlayerEvent(contest_index=0, rating_mu=1500, rating_sig=171, perf_score=1500, place=1),
                            PyPlayerEvent(contest_index=1, rating_mu=1555, rating_sig=130, perf_score=1618, place=0),
                            PyPlayerEvent(contest_index=2, rating_mu=1500, rating_sig=111, perf_score=1393, place=1),
                            PyPlayerEvent(contest_index=3, rating_mu=1487, rating_sig=100, perf_score=1459, place=2),
                            PyPlayerEvent(contest_index=4, rating_mu=1483, rating_sig=94, perf_score=1471, place=2)]),
 'player_3': Player(name='player_3',
                    rating=1279,
                    events=[PyPlayerEvent(contest_index=0, rating_mu=1295, rating_sig=171, perf_score=1256, place=2),
                            PyPlayerEvent(contest_index=1, rating_mu=1270, rating_sig=130, perf_score=1242, place=2),
                            PyPlayerEvent(contest_index=2, rating_mu=1312, rating_sig=111, perf_score=1393, place=1),
                            PyPlayerEvent(contest_index=3, rating_mu=1291, rating_sig=100, perf_score=1240, place=3),
                            PyPlayerEvent(contest_index=4, rating_mu=1279, rating_sig=94, perf_score=1247, place=3)]),
 'player_4': Player(name='player_4',
                    rating=1809,
                    events=[PyPlayerEvent(contest_index=3, rating_mu=1767, rating_sig=171, perf_score=1819, place=0),
                            PyPlayerEvent(contest_index=4, rating_mu=1809, rating_sig=130, perf_score=1855, place=0)])}

Contributing

Welcome contributions! If you would like to contribute to the project, please fork the repository and submit a pull request.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Elo-MMR-Py-1.0.3.tar.gz (7.2 kB view details)

Uploaded Source

Built Distributions

Elo_MMR_Py-1.0.3-cp312-cp312-win_amd64.whl (332.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

Elo_MMR_Py-1.0.3-cp312-cp312-win32.whl (316.7 kB view details)

Uploaded CPython 3.12 Windows x86

Elo_MMR_Py-1.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

Elo_MMR_Py-1.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

Elo_MMR_Py-1.0.3-cp312-cp312-macosx_11_0_arm64.whl (458.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

Elo_MMR_Py-1.0.3-cp312-cp312-macosx_10_9_x86_64.whl (466.8 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

Elo_MMR_Py-1.0.3-cp311-cp311-win_amd64.whl (332.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

Elo_MMR_Py-1.0.3-cp311-cp311-win32.whl (316.6 kB view details)

Uploaded CPython 3.11 Windows x86

Elo_MMR_Py-1.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

Elo_MMR_Py-1.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

Elo_MMR_Py-1.0.3-cp311-cp311-macosx_11_0_arm64.whl (458.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

Elo_MMR_Py-1.0.3-cp311-cp311-macosx_10_9_x86_64.whl (466.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

Elo_MMR_Py-1.0.3-cp310-cp310-win_amd64.whl (332.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

Elo_MMR_Py-1.0.3-cp310-cp310-win32.whl (316.6 kB view details)

Uploaded CPython 3.10 Windows x86

Elo_MMR_Py-1.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

Elo_MMR_Py-1.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

Elo_MMR_Py-1.0.3-cp310-cp310-macosx_11_0_arm64.whl (458.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

Elo_MMR_Py-1.0.3-cp310-cp310-macosx_10_9_x86_64.whl (466.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

Elo_MMR_Py-1.0.3-cp39-cp39-win_amd64.whl (332.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

Elo_MMR_Py-1.0.3-cp39-cp39-win32.whl (316.7 kB view details)

Uploaded CPython 3.9 Windows x86

Elo_MMR_Py-1.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

Elo_MMR_Py-1.0.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

Elo_MMR_Py-1.0.3-cp39-cp39-macosx_11_0_arm64.whl (458.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

Elo_MMR_Py-1.0.3-cp39-cp39-macosx_10_9_x86_64.whl (467.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file Elo-MMR-Py-1.0.3.tar.gz.

File metadata

  • Download URL: Elo-MMR-Py-1.0.3.tar.gz
  • Upload date:
  • Size: 7.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for Elo-MMR-Py-1.0.3.tar.gz
Algorithm Hash digest
SHA256 c5e0d9360daa7563baf348a4f388a3cee97427d8ffb3e3bdace7906138ec9b3a
MD5 04af52d0401b6c9d205068fe487489c3
BLAKE2b-256 9406fb2caf57efa5804f2993cbf447f59ea2658e5b71f7e7e8298b15626a578b

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5ce20428add3285ecbca2ce4d495b8bac1d489610f569617bd81d5650a05e26b
MD5 b9fe6b8019bca7f426aecea836f34836
BLAKE2b-256 280b521bd6e0cddd4333809805ae19a03b2afb9b16a3e2f274e7b7472b9fadbd

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp312-cp312-win32.whl.

File metadata

  • Download URL: Elo_MMR_Py-1.0.3-cp312-cp312-win32.whl
  • Upload date:
  • Size: 316.7 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 c81a2b0397dfc871a5d8c5bbbf74fb237aff90f30db25b998b1844e33d03ba1c
MD5 7ef0d713454b6a2044f88c3836ad2248
BLAKE2b-256 07efe6bc202a65d88ed04eecc6a68a350f1f7a17698982cc5fab6471f570a946

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de845d5cac40f54b234a3d80c8df79856440fd7b9532bd5fbab216bc5632d020
MD5 3c976fa555161d5534c84a4a6b4e8498
BLAKE2b-256 2c628425c26c8e0627819b52acc5b3db15b95b940ee040bc3ac4b7bd8259c490

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 82e60744860ef6f40106c87b52e6cb80824d781953e85abdd1a2c1fa6955575a
MD5 40fa5b9bda1bd168f2659d8a1ce22bef
BLAKE2b-256 7852e981359bab4320196ecefd0038c499a0cb5137eb7873cae52fd24799a009

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f4f5f909a77c05d717199dc03c7dc10ad5156ecf9995bd966682996e7e37708b
MD5 20cd2603f3edbfa398ae35ea0c83f128
BLAKE2b-256 940b1dfe5bdaa703d7c6627c58a88713b75d68f9fcc654e678804454ff641486

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 087161a58a1390d18902c6a9776563d26e3d0bbc87be6b2068fb673df70cf997
MD5 d0030b352c1a4ed7de213914726f172f
BLAKE2b-256 2d104d3ae761288138efd39b7eb5cac11557e2f4fd56ef8549b9c31a0ff1a4a4

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 297d4aa6afdd80965e32be523d1f147acdbb2e16e111320a12567a6d5846168c
MD5 abf6bb068db04ddaea2506a136a5de05
BLAKE2b-256 f9c02c2d24c7868e1b96b6bdbbfd7497681858132c370dfce533522d7f5c37eb

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: Elo_MMR_Py-1.0.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 316.6 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 388ab084e032d24cd64cc710c1055d4533a7257380c2ff1665cd3addfe898531
MD5 fe784b037a126390ccec51dcfea50790
BLAKE2b-256 c30b68d8c5a748e6b1f9d5c3ef1a07cc55767ef9cb5db6a158e54c99d1e358f8

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 029759266fdefe214c7fc76ce1898d6e175d64d174f22e2086a601c7b74d74d6
MD5 a5981992e640952e1fc8272105833154
BLAKE2b-256 0213cdbf0aab45f0f505f41d811fde2a93f6e3c4343c4217c7340ba017300b91

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9a9a8805fdcff20c5e0af9112443b36b210c05671a7da9920da60684e5d10843
MD5 3e56ea02f504ac3e113059e923df5231
BLAKE2b-256 eec42db896fee402c87f545e37a96fc1cf6f19511a062e2535c6b2f6efd5e2bd

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4335fd93682a823570cb4594b3aaa9cfc23240f854f4d1ff4891e8f4165efda3
MD5 c9ac69818cce900eea088f5d8c9d02be
BLAKE2b-256 4722d7861dc4eb650fc09124fee2417d694468db69d486abac1b48c9b836dde4

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3b858d5486a9fec442419a1b0b93545f225aff4373666db479185a9639ff4171
MD5 1d617394ee95ce4d0e7ef423a143588a
BLAKE2b-256 131da47628690147e56e25e64444e6caaacca97bdecc0423ecbc9bf231f9824f

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1bb7b0091eb4357c33aec046133add3113682ef94bcd9024952fb8ca90d11298
MD5 b49d001ade2b5d91e25580b41ee35524
BLAKE2b-256 ac557a7b9cb1a74f3d6fa7c57b0c24ee8c9a62fa056cc96992e3e173ea00e85b

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: Elo_MMR_Py-1.0.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 316.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 6dab6e64f708a073bbdf3b81baf1cb70c9890f40808d1ad05438c2d5f2325aa4
MD5 ed7e971562a68302a06c3b4e26c0692b
BLAKE2b-256 07a7a0ffa3f087ec346efd25f53bae118206e73527f419a9fce2dc1d905be434

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7692940a3bed4e55b81bb5874dbb503f6083f9a2bccfa5dcfd711eb581650cf3
MD5 be4d85645ba6141c4a6ccbdff11713be
BLAKE2b-256 2ae305d61ea623cb710279db886d901b790f7c899e2a57f8009a25859cd16c2b

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1bdf4a218252acac02948164b2f97dde8106248cb5546f7cc9c3c26aedbf6106
MD5 347c8d8274c9c18249414ef0618e3616
BLAKE2b-256 2550975889712ba0467886bb5e18849604d08b1916c76d42cb97e15f58013bf1

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5829daecfb9f5834ca89416fc6eed6123741c2a653e547cc703bb6ac651acbcb
MD5 6ba887ed739cde5d2c9bca0ec0646aa0
BLAKE2b-256 45f7758c64352b1bba4c4c68c76ccc8ab87c94bc423884cc1cb3dde629b307a1

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 baf8077ef1563cb30141551862f3e6f9de38de0f65cfed6d8d797dc208637e13
MD5 cb66d741fde6af24c3a23d01f60641bb
BLAKE2b-256 6b660941ea8fa21cd2cef4e447082431affd510b955e7a921d1f4f1878c0d475

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: Elo_MMR_Py-1.0.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 332.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 52298f809cdb95b79ddd29f5a76979a992102774df82d54939879678fb499dd9
MD5 9d63472794f293b39f033ecdb39d4c69
BLAKE2b-256 f3ef8a7c90f00f3c35776f8182dd3fe9f0c12185c51346aac7ad7259eee40db5

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: Elo_MMR_Py-1.0.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 316.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c4fcbaad95851bdc8136a5f95c06ab9aa75bf0ff1e0d322b12023634a8a21bc2
MD5 1b2513258444950a566a758a72d48104
BLAKE2b-256 eaf7e166f7d6bd35eefc2b8a5e7b0e5de9bb99faf69bd890165799e287839d54

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 861501c06ab8932eb11effe61720fc10eb86750f0d519cf549dba6053121649f
MD5 181c189ce5b7c8d1b5e8361bea5f1487
BLAKE2b-256 268d3f225656c03046ca93a6dd6da2695b837df287f3b026f70629bdcaf33e2b

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b4345577be36ec6410acdac3184b5d45c06d136d60f7ef0b2621b32562053121
MD5 1ae2b1bb81f0dba2edf3a5f211b8da6b
BLAKE2b-256 06456b8dc0a2a3e91330ab2eeb3861a755ef20569df5338150ee241419da3d4e

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c22b0e6f38acc2dd4872fb3e71d5e96583d998b7916fcca576050aa66510949a
MD5 b81d0309212fdd8157d9eeb14b641223
BLAKE2b-256 a6bc147367600cb250b0a210aae5c6486fb63e688e33a80f464eec1d8268c77f

See more details on using hashes here.

File details

Details for the file Elo_MMR_Py-1.0.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Elo_MMR_Py-1.0.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac255b37cccc6bcb00d16c07a40791429e34ae21894c9ef82fc8e5619735e3b2
MD5 99fcaac514dae004998ed6dd5df19662
BLAKE2b-256 6e290c6e3efda041842c3a3870b5f782e492729f09a1aa61e52ba8607a5fb19e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page