Skip to main content

EmbedSeg provides automatic detection and segmentation of objects in microscopy images

Project description

Embedding-based Instance Segmentation in Microscopy

Table of Contents

Introduction

This repository hosts the version of the code used for the publication Embedding-based Instance Segmentation of Microscopy Images.

We refer to the techniques elaborated in the publication, here as EmbedSeg. EmbedSeg is a method to perform instance-segmentation of objects in microscopy images, based on the ideas by Neven et al, 2019.

With EmbedSeg, we obtain state-of-the-art results on multiple real-world microscopy datasets. EmbedSeg has a small enough memory footprint (between 0.7 to about 3 GB) to allow network training on virtually all CUDA enabled hardware, including laptops.

Dependencies

One could execute these lines of code to run this branch with GPU support:

mamba create -n EmbedSeg python
mamba activate EmbedSeg
mamba install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
git clone https://github.com/juglab/EmbedSeg.git
cd EmbedSeg
pip install -e .

For CPU support, one could execute the following lines of code:

mamba create -n EmbedSeg python
mamba activate EmbedSeg
pip install torch torchvision
git clone https://github.com/juglab/EmbedSeg.git
cd EmbedSeg

Getting Started

Look in the examples directory, and try out the DSB-2018 notebooks for 2D images or Mouse-Organoid-Cells-CBG notebooks for volumetric (3D) images. Please make sure to select Kernel > Change kernel to EmbedSegEnv.

Datasets

3D datasets are available as release assets here. datasets

Training and Inference on your data

*.tif-type images and the corresponding masks should be respectively present under images and masks, under directories train, val and test. (In order to prepare such instance masks, one could use the Fiji plugin Labkit as suggested here). The following would be a desired structure as to how data should be prepared.

$data_dir
└───$project-name
    |───train
        └───images
            └───X0.tif
            └───...
            └───Xn.tif
        └───masks
            └───Y0.tif
            └───...
            └───Yn.tif
    |───val
        └───images
            └───...
        └───masks
            └───...
    |───test
        └───images
            └───...
        └───masks
            └───...

Issues

If you encounter any problems, please file an issue along with a detailed description.

Citation

If you find our work useful in your research, please consider citing:

@InProceedings{lalit2021embedseg,
  title = 	 {Embedding-based Instance Segmentation in Microscopy},
  author =       {Lalit, Manan and Tomancak, Pavel and Jug, Florian},
  booktitle = 	 {Proceedings of the Fourth Conference on Medical Imaging with Deep Learning},
  pages = 	 {399--415},
  year = 	 {2021},
  editor = 	 {Heinrich, Mattias and Dou, Qi and de Bruijne, Marleen and Lellmann, Jan and Schläfer, Alexander and Ernst, Floris},
  volume = 	 {143},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {07--09 Jul},
  publisher =    {PMLR},
  pdf = 	 {https://proceedings.mlr.press/v143/lalit21a/lalit21a.pdf},
  url = 	 {https://proceedings.mlr.press/v143/lalit21a.html},
}

and

@article{lalit2022mia,
title = {EmbedSeg: Embedding-based Instance Segmentation for Biomedical Microscopy Data},
journal = {Medical Image Analysis},
volume = {81},
pages = {102523},
year = {2022},
issn = {1361-8415},
doi = {https://doi.org/10.1016/j.media.2022.102523},
url = {https://www.sciencedirect.com/science/article/pii/S1361841522001700},
author = {Manan Lalit and Pavel Tomancak and Florian Jug},
}

Acknowledgements

The authors would like to thank the Scientific Computing Facility at MPI-CBG, thank Matthias Arzt, Joran Deschamps and Nuno Pimpao Martins for feedback and testing. Alf Honigmann and Anna Goncharova provided the Mouse-Organoid-Cells-CBG data and annotations. Jacqueline Tabler and Diana Afonso provided the Mouse-Skull-Nuclei-CBG dataset and annotations. This work was supported by the German Federal Ministry of Research and Education (BMBF) under the codes 031L0102 (de.NBI) and 01IS18026C (ScaDS2), and the German Research Foundation (DFG) under the code JU3110/1-1(FiSS) and TO563/8-1 (FiSS). P.T. was supported by the European Regional Development Fund in the IT4Innovations national supercomputing center, project number CZ.02.1.01/0.0/0.0/16013/0001791 within the Program Research, Development and Education.

The authors would like to thank the authors of StarDist repository for several useful, helper functions. The authors would also like to thank Sahar Kakavand and Marco Dalla Vecchia for feedback on notebooks.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

embedseg-0.2.5.tar.gz (9.1 MB view details)

Uploaded Source

Built Distribution

embedseg-0.2.5-py3-none-any.whl (82.5 kB view details)

Uploaded Python 3

File details

Details for the file embedseg-0.2.5.tar.gz.

File metadata

  • Download URL: embedseg-0.2.5.tar.gz
  • Upload date:
  • Size: 9.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for embedseg-0.2.5.tar.gz
Algorithm Hash digest
SHA256 9c2f43485efdde7734042fc7c4d93d84a9bf92049187f1de5f684116488e10c2
MD5 09ce27b9e3910ec13b033f86edb1bde5
BLAKE2b-256 c366680cc8dce74dca47c7d2751575c88d996b19864dc0aa5361ed0d57dd9c0c

See more details on using hashes here.

File details

Details for the file embedseg-0.2.5-py3-none-any.whl.

File metadata

  • Download URL: embedseg-0.2.5-py3-none-any.whl
  • Upload date:
  • Size: 82.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for embedseg-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 0665467f783abff4e4a77d943c517b137ce5c6bdaae8559dd05e3cf5ca5ac38a
MD5 9de6a379c9e7a0172acd0df44d80e76d
BLAKE2b-256 ff65f5fb221e51ce7d41496a32b3388de425a9494bd0b961e80c578dc39a630e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page