Skip to main content

EEC computations in python

Project description

EnergyEnergyCorrelators

This library can be used to compute various Energy-Energy Correlators (EECs) [1, 2, 3] on collections of particles. The core computations are carried out efficiently in C++ utilizing the BOOST Histogram package (a copy of which is distributed with this library). Note that a C++14-compatible compiler is required by the BOOST Histogram package. The C++ interface is header-only to facilitate easy integration into any existing framework, including the FastJet library. A convenient Python interface is also provided using Cython and multiprocessing.

Documentation

This README is currently the documentation for the EEC library. In the future, this package may be incorporated into other projects, such as EnergyFlow or FastJet contrib.

The EEC library provides a variety of types of energy-energy correlators that can be computed, utilizing a flexible design sctructure that facilitates adding new computations easily. Each computation is represented by its own C++ class, which derives from the common EECBase class that contains common functionality such as passing in particles and extracting the histogrammed result.

Since the value of any EEC on a given event is a distribution, a histogram must be declared in advance that will be filled event-by-event. The computation classes are templated to allow for user specification of axes transformations. The template arguments should be models of the BOOST Histogram Transform concept, such as boost::histogram::axis::transform::id (the identity transform, bins will be linearly spaced) or boost::histgraom::axis::transform::log (to get logarithmically spaced bins).

Since version 0.1.0, the EEC library can raise the transverse momentum of each vertex of the EEC to an arbitrary power (only an exponent of 1 is infrared and collinear safe). Additionally, charge-dependent EECs can be computed by passing in particle charges and specifying an integer exponent for the charge of each vertex of the EEC.

Current EEC computations are described below:

  • EECLongestSide: Computes the N-point EEC distribution binned according to the longest side (largest angle) between the N particles. Supported values of N are 2, 3, 4, and 5 (larger values are simply computationally untenable). Since the resulting distribution is one-dimensional, there is a single template argument (that defaults to the identity) specifying which type of axis should be used. The constructor takes four required arguments: the number of bins, axis minimum, axis maximum, and value of N. Additionally, there are futher default arguments which are detailed below. EECLongestSide_id and EECLongestSide_log are provided as typdefs of this class with the axis transform already included.

  • EECTriangleOPE: This is a three-dimensional EEEC that uses coordinates that are particularly suited for studying the OPE limit where two of the three particles are close to collinear. There are three template arguments, corresponding to the xL, xi, and phi axes, respectively. The constructor takes nine arguments: for each axis (in the same order as the template arguments), the number of bins, axis minimum, and axis maximum. Additionally, the same EECTriangleOPE_id_id_id, EECTriangleOPE_log_id_id, EECTriangleOPE_id_log_id, and EECTriangleOPE_log_log_id are provided as typedefs of this class with the axes transforms already specified.

Common arguments to each EEC class are the following:

  • bool norm: whether or not to divide the transverse momenta by their sum prior to computing the EEC.
  • vector<double> pt_powers: exponent for the pT on each vertex of the EEC. Length must match the number of particles being correlated, or else be length 1 in which case the same power is used for all vertices.
  • vector<unsigned int> ch_powers: similar to pt_powers except that these are the exponents of the charges for each vertex. If any of these are non-zero, then particle charges are expected to be provided.
  • bool check_degen: do no EEC computation but check if any particle distances are degenerate will each other in a given event.
  • bool average_verts: do not separate the computation based on the asymmetry of the vertices, but instead average over all combinations (see below).

If pt_powers and ch_powers create distinguished vertices, then more than one histogram will be employed to calculate the EEC for each possibility (the average_verts option turns off this behavior). Currently, this is only relevant for N=3 computations: N=2 is automatically symmetric and N=4 and N=5 require symmetric vertices. The description method of the class contains information about the different histograms created.

The resulting histogram and corresponding errors can be accessed with the get_hist method, which accepts a boolean for whether or not to include the overflow bins and an index which defaults to 0 for which histogram to select (see above for how there can be multiple histograms per computation) and returns a pair of vectors of doubles, which are the flattened (C-style) histogram values and uncertainties. There are also bin_edges and bin_centers methods (specific to each computation class) that return the bins, which take an integer to specify an axis (if there is more than one).

Additionally, if the EEC_HIST_FORMATTED_OUTPUT macro is defined prior to the includion of EEC.hh (note that this requires that boost/format.hpp is available), then the histograms are printable to any output stream using the output method.

C++ Usage (Header-only)

The entire library is contained in a single header file, eec/include/EEC.hh. If you plan on using the EEC library with FastJet, ensure that PseudoJet.hh is included prior to including EEC.hh. This will expose an overloaded compute method for each EEC computation that accepts a vector of PseudoJet objects. Otherwise, there is a compute method that takes a vector of doubles, which must be size 3N where N is the number of particles, arranged as pT1, rap1, phi1, pT2, rap2, phi2, ..., pTN, rapN, phiN.

Python Usage

The EEC library also contains a Cython-based wrapper of the core C++ code. This is most easily used by installing via pip, e.g. pip install eec. NumPy is the only required package. Note that a C++14-enabled compiler must be available for the compilation from source to succeed.

There is one Python class for each EEC computation. The templated arguments are dealt with by specifying the axis transforms as a tuple of strings. Currently, only 'id' and 'log' are supported, in the combinations for which there is a provided C++ typedef (see above). The arguments to the classes are straightforward, and can be examined more closely in core.pyx. There is also an eec method that can be used to parallelize computations on many events in Python.

References

[1] H. Chen, M. Luo, I. Moult, T. Yang, X. Zhang, H. X. Zhu, Three Point Energy Correlators in the Collinear Limit: Symmetries, Dualities and Analytic Results, [1912.11050].

[2] H. Chen, I. Moult, X. Zhang, H. X. Zhu, Rethinking Jets with Energy Correlators: Tracks, Resummation and Analytic Continuation, [2004.11381].

[3] L. Dixon, P. T. Komiske, I. Moult, J. Thaler, H. X. Zhu, Analyzing N-Point Energy Correlators with CMS Open Data, to appear soon.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

EnergyEnergyCorrelators-1.1.0.tar.gz (375.1 kB view details)

Uploaded Source

Built Distributions

EnergyEnergyCorrelators-1.1.0-cp39-cp39-win_amd64.whl (408.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

EnergyEnergyCorrelators-1.1.0-cp39-cp39-win32.whl (312.7 kB view details)

Uploaded CPython 3.9 Windows x86

EnergyEnergyCorrelators-1.1.0-cp39-cp39-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

EnergyEnergyCorrelators-1.1.0-cp39-cp39-manylinux2010_i686.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

EnergyEnergyCorrelators-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

EnergyEnergyCorrelators-1.1.0-cp38-cp38-win_amd64.whl (407.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

EnergyEnergyCorrelators-1.1.0-cp38-cp38-win32.whl (312.5 kB view details)

Uploaded CPython 3.8 Windows x86

EnergyEnergyCorrelators-1.1.0-cp38-cp38-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

EnergyEnergyCorrelators-1.1.0-cp38-cp38-manylinux2010_i686.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

EnergyEnergyCorrelators-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

EnergyEnergyCorrelators-1.1.0-cp37-cp37m-win_amd64.whl (408.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

EnergyEnergyCorrelators-1.1.0-cp37-cp37m-win32.whl (312.4 kB view details)

Uploaded CPython 3.7m Windows x86

EnergyEnergyCorrelators-1.1.0-cp37-cp37m-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

EnergyEnergyCorrelators-1.1.0-cp37-cp37m-manylinux2010_i686.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

EnergyEnergyCorrelators-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

EnergyEnergyCorrelators-1.1.0-cp36-cp36m-win_amd64.whl (408.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

EnergyEnergyCorrelators-1.1.0-cp36-cp36m-win32.whl (312.4 kB view details)

Uploaded CPython 3.6m Windows x86

EnergyEnergyCorrelators-1.1.0-cp36-cp36m-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

EnergyEnergyCorrelators-1.1.0-cp36-cp36m-manylinux2010_i686.whl (1.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

EnergyEnergyCorrelators-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

EnergyEnergyCorrelators-1.1.0-cp35-cp35m-win_amd64.whl (408.1 kB view details)

Uploaded CPython 3.5m Windows x86-64

EnergyEnergyCorrelators-1.1.0-cp35-cp35m-win32.whl (312.4 kB view details)

Uploaded CPython 3.5m Windows x86

EnergyEnergyCorrelators-1.1.0-cp35-cp35m-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

EnergyEnergyCorrelators-1.1.0-cp35-cp35m-manylinux2010_i686.whl (1.3 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

EnergyEnergyCorrelators-1.1.0-cp35-cp35m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

File details

Details for the file EnergyEnergyCorrelators-1.1.0.tar.gz.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0.tar.gz
  • Upload date:
  • Size: 375.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0.tar.gz
Algorithm Hash digest
SHA256 e6e43d1530dfdb19d4920bcf463dbf1f5f0d1e428681cf694b34a2976be61c68
MD5 29b0defafdb75fca50b450a1f9ccd01a
BLAKE2b-256 26fe314198288734495c56a60b17b322db964b28e5fcdba485d7dd793dd12fd1

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 408.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a78d1792a2990a031a47805128a307f7a949480d1cbe5fe788d6b7a3989f8820
MD5 14fe028a7a5039ed024b3c9c92ce0248
BLAKE2b-256 2e4ebab7437da2cf597270b811ea9be36dc4f73abf6f2df0be42fc758cca2872

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 312.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ee95fd894e7ef780c0d924057792a1e0eb9d7a4bbc2d23d1ffdbca1ee9604410
MD5 f70d9fd6d1831c3058d3b63c3f4ae845
BLAKE2b-256 904b8a58de65140f940da2c397fe951b7b595d41f96fd27f211fc7b3dd86b298

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e6800f8bc411d0479fa7eb8ba9ccb0efabb1ed4ca4407dd51a578a9641696fe4
MD5 0ea5d3d4d2d53d21e2a620a9059ecd32
BLAKE2b-256 70b2ec7d53822a473cb719912a90c4bc92c04f7eee141765489712fcae696d92

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f8308b51719eb91e57b2206799ac00dbae2a8129e1dae4afa5dec5e0e02ab5e2
MD5 6f37d01274765626dee7f5f19c7e7997
BLAKE2b-256 26fe90e40d1bf3fadb9c3014f487ec95c1813886bad1a96e5fd7fb877bbe8856

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b270c2fc9b010c375233d51593656f25e2494c940afbf542d1868ed4599639f9
MD5 b8e291b8b8bedb48eb3b00a5445af5ef
BLAKE2b-256 0c2fab27c6cb9dc74b024b8cd1bdd4c2504e67f4a2666e991333f9c23d43ebb5

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 407.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 eb1b49b3618cc95726f16a11549ffb32845f482231e476ba67175cf6909227a1
MD5 49baff7789ce2e53d8ee4cd928e1e977
BLAKE2b-256 21495fbccf7c3da3d19700bd311ec6156461c6095615ecb76ba25f50bf3ba76e

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 312.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5308dce975aa5c6087a21ff6a7529b18a29a2630fa3597bb5d328626e7e4e274
MD5 9f4273e14fd68e0af0b08d0544ca33a5
BLAKE2b-256 aaac036fd70cd7570f011fe3959b0b787ae85cd91c176ae9adffed04a14224a8

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6708dbad29d3d56d3cac6c845b05c4da938a3e413cf1ec22604498d684676825
MD5 8bc0d51ab1bb432983fea40b09b6121e
BLAKE2b-256 7aab95a73d0e169b7bd245417b8a17902b9286567ea325358579485ac42b1d8a

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 94e5f64168e430744c5bdcabd4c594d342f543ca94df81169a1185f07c8f3a89
MD5 34129823a18a80e206732bc12b36995d
BLAKE2b-256 24d3568a41c0c5e8fcf8df279342d9fe154326cab0993cd04ebc56805f7e6e32

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2bc8c2635352804ee2284369dc8f2d61bb0c522fd0f1bef8a19f2529dc1a68ff
MD5 124273b4a62dc0951dc86b510bc75e10
BLAKE2b-256 19f99632566b6941473ab26fb590fd52523ca22afc708e36bcc38e8c2b25c226

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 408.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8510a23aa7e6ea7860dd85d4556c4188332549437f55c8faaff441f1c48b494b
MD5 c04dcbd07a6b34ac9cce67344563ad84
BLAKE2b-256 84f222360f351ebe13425f892bd80ab374dd903cfbeadd418742c71a7086ae45

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 312.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ddbaec6cf20f04d330a9f58c73ff2c8d294d39b2d54d2baf1dd149fc737e38f5
MD5 c99860df03bc27f1dcc6a3b8eb92f1f7
BLAKE2b-256 064f1c3c485ea0b1dbccc99907f11469153704a3a3792220fc109c159bcf3998

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 92bc498032fd71471b240823e7cba193044a100abad279301afa598759b25c03
MD5 521142002d9336a822d759fd1717fa8a
BLAKE2b-256 d74e7fc3c27585eb865649fab68c81526d30b5c8dff43849b92b6391afed75f8

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 be704db7ddea1151d128f9788af8dcc9f19cde523fe48b56a6a366220bc6ef88
MD5 429572d924a6271d46c6cdfbc663d9a8
BLAKE2b-256 bf0a9b197c7a418039213841d116691e090af658afcbc354bf28a5063c91bfc7

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d1ce06afe8fbb58fcbf6a696b5192005630859a3e492fae54c6d498d1d5e82e9
MD5 318309b8700ee380ae5de838e6c59a3d
BLAKE2b-256 0bb6cc8cf3e3071fbe379c94de5f804d7a2d3bf9ed72c91ebbcd0334eb3bcc94

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 408.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 8235f00e09540fbe4890e1e02aed5482d2301fd688db187185ef787840c1513c
MD5 c524e89da4a8e7d0a292d92f5f4bb58c
BLAKE2b-256 812d4ab0b6d85abbd450a1d93af26a48b21fc3a20bb29bcdb2a1dc6973f885dc

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 312.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 75e7cfdd1fff6732d0a87ca077abf02b6f3b9b8888ffc8e9a4e0f6b637f867e9
MD5 615228f5a7f461a09dd33c498e5caf2c
BLAKE2b-256 37f74757df74acb7c95cecf9dda6b415d359020d27982b935e5ca9c52f475107

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a08c51c1af43a0e11b3583f7201a1ba6af7d025b2ed2d640a67b42daf7d05f96
MD5 91eaff25ee83a62628ead1b8774aacaa
BLAKE2b-256 7fbea98fe1f415b66d6f51a3feb529e21fd4c2051e6fefed1a34a6e5f3197f57

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 409d083e088754a8fa818d2c9549d018caec83e4d38e6a3e8b7d04c58747e2b9
MD5 9dcedd3f4d75437e1de33b7f87e2df18
BLAKE2b-256 3f11abdc456921b2403e984bc87dc8b76faf9fc43fcb56f2eb99e78022d8232b

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 65abb55a2c948aab5ba12dda3bcd9429932e4b0cc4e83ad9258cc66a0914af68
MD5 fa6ea54e6eccf9caa21b197746176036
BLAKE2b-256 366ffc14a065b995f5d187a2be982f76dd9d9b8cd17cac6f29877a1622e078a5

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 408.1 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 1794e0cebe2031b802bf4007b62e98c0560a1e0d9d0f79bcfd4bb5787b52b99d
MD5 f0a83718a384ca113a756f22c390e5c4
BLAKE2b-256 132bd7670bd895d49af4277f38a9fe756a12888fbf15e0411546e1ade195e496

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 312.4 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 7648a924382a795ef5d6b5c932645808248dd5644954675d8dda8791ef032299
MD5 17b46258eedbb156d25bfbe9e4a6e398
BLAKE2b-256 ae636b8b3cfee867d92c4c816631329e794164728147a2a590b434649344bc44

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f038439cd38f9dc0df59e200e6505727fb26537bda3f5f9b0a13fca63e6e87c1
MD5 481721f295337067b2e13e7f70381ae2
BLAKE2b-256 1f8edbcf1e4ef0c129a14d85d283954aaaa0e6c574de7c406fba9e0c535d1ed7

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/19.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.1

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 05399ce577d5d4ecdd416e89b6ccfe2adfb1587abfd3dc2a38787f3d2a5044c3
MD5 85dcd2157e2ae2ac1e19bb5c6d7b0d1f
BLAKE2b-256 b00bfff5f4d10b966de8b7bb8f7326d32632f74c85f017d2ac8d86dcfba9ed89

See more details on using hashes here.

File details

Details for the file EnergyEnergyCorrelators-1.1.0-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: EnergyEnergyCorrelators-1.1.0-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for EnergyEnergyCorrelators-1.1.0-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a81d6569060c123292e9efabe60201633fa5daca4c42e72396d43bd2311b2399
MD5 c2ce6a31df7343fa656f76791e9d923e
BLAKE2b-256 3b517d3c516a8e801bca6076e30927b510728db79759080a2ce602846db763d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page