Skip to main content

EvoOpt: Python Implementation of State-of-Art Evolutionary Algorithms

Project description

EvoOpt - Evolutionary Optimization in Python

EvoOpt Logo

EvoOpt: Evolutionary Optimization in Python

Build Status PyPI-Status PyPI dependencies PyPI-Implementation Python Version PyPI-License LinkedIn DOI

Python implementation of state-of-art meta-heuristic and evolutionary optimisation algorithms.

This library is implemented in Numpy (which was written in C) for fast processing speed

Table of Contents

About The Project

Current support for algorithms

[x] Genetic Algorithm

[x] Duelist Algorithm

[X] Particle Swarm Optimization

[X] Gravitational Search Algorithm

[X] Firefly Algorithm

[X] Simulated Annealing

[ ] Multi-Verse Optimization

[ ] Grey-Wolf Optimization

More algorithms to come...

Getting Started

There are four simple steps to run an optimization problem using EvoOpt

(Example 2 from example folder)

Prerequisites

from solver.DuelistAlgorithm import DuelistAlgorithm

**1. Define your function. Say you want to minimize the equation f=(x1,x2) = (x1)^2+(x2)^2 **

def f(x1,x2):
	return x1*x1+x2*x2

**2. Define the variables that can be manipulated for optimization. Define their names as string and put them in an array. **

x=["x1","x2"]

3. Define the boundaries for the manipulated variables:

Say:

x1 is bounded from -2 to 10 (-2 is min value of x1 and 10 is max value of x1)

x2 is bounded from 10 to 15 (10 is min value of x2 and 15 is max value of x2)

We can arrange these boundaries according to the definition array in step 2.

Variables x1 x2
Min -2 5
Max 10 15

The corresponding code is:

 xmin=[-2,5]
 xmax=[10,15]

4. Setup the solver and start the solve procedure.

DA=DuelistAlgorithm(f,x,xmin,xmax,max_gen=1000)
DA.solve(plot=True)

Example Result

Result Image

Dependencies

Numpy and Matplotlib

Windows:

$python -m pip install numpy matplotlib

Linux:

$pip install numpy matplotlib

Installation

You can use two methods for installation:

1. Install from github (recommended as this will download the newest version)

First download the git repository. You can do this by clicking the download button or using the git command:

$ git pull https://github.com/tsyet12/EvoOpt

Move to the directory:

$ cd (directory of EvoOpt)

Run setup. The following command installs all files in directory:

$ pip install -e .

**1. Install from pip **

You can install this package from pip.

Linux:

$ pip install EvoOpt

Windows:

$python -m pip install EvoOpt

Usage

To be updated.

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b testbranch/solvers)
  3. Commit your Changes (git commit -m 'Improve testbranch/solvers')
  4. Push to the Branch (git push origin testbranch/solvers)
  5. Open a Pull Request

License

Distributed under the BSD-2-Clause License. See LICENSE for more information.

Contact

Sin Yong Teng: tsyet12@gmail.com

Project Link: https://github.com/tsyet12/EvoOpt

Acknowledgements

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

EvoOpt-0.14.tar.gz (13.1 kB view details)

Uploaded Source

File details

Details for the file EvoOpt-0.14.tar.gz.

File metadata

  • Download URL: EvoOpt-0.14.tar.gz
  • Upload date:
  • Size: 13.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.0

File hashes

Hashes for EvoOpt-0.14.tar.gz
Algorithm Hash digest
SHA256 9e05cde1093e6a6a077bd0968079b38d2d02158f12501b0e96831e2c9723de39
MD5 45c9da0cb61629b310581f0ddfdb8c9c
BLAKE2b-256 a9503eafd518a5d69506c3cb0bd05f22fad78e3a149d44ab2268754c451e63d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page