calculate example-wise gradient
Project description
this repository is still under construction (2021/07/21)
ExGrads
This repository provides a hook script: calculating Example-wise Gradients efficiently.
Note
This script use the work as an important reference.
I think it is the great first step to handle per-example gradients efficiently.
I'd like to express my respect for the step.
Features of This Script
- Calculate example-wise gradient efficiently
There is no method calculating Hessian in contrast to the referenced work. - Handle general modules
Including Linear, Conv2d, BatchNorm2d, and BatchNorm1d. More modules will be added soon. - How to use this script in practice
How to Use
import torch
import exgrads as ExGrads
batch,dim,label = 5,3,2
x = torch.randn(batch,dim) #: inputs
y = torch.randint(low=0,high=label-1,size=(batch,)) #: outputs
model = torch.nn.Sequential(torch.nn.Linear(dim, label)) #: PyTorch model
loss_fn = torch.nn.functional.cross_entropy #: loss function
ExGrads.add_hooks(model)
model.zero_grad()
loss_fn(model(x), y).backward()
ExGrads.compute_grad1(model)
# param.grad: gradient averaged over the batch
# param.grad1[i]: gradient of i-th example
for param in model.parameters():
assert(torch.allclose(param.grad1.sum(dim=0), param.grad))
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ExGrads-0.1.2.tar.gz
(4.0 kB
view details)
Built Distributions
ExGrads-0.1.2-py3.8.egg
(6.6 kB
view details)
File details
Details for the file ExGrads-0.1.2.tar.gz
.
File metadata
- Download URL: ExGrads-0.1.2.tar.gz
- Upload date:
- Size: 4.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a71ec62c246c8883dbe207768d6dba1f6263d7f8395d29e68074a0875c31d65f |
|
MD5 | d5892dd94460d681e04478038c26acc7 |
|
BLAKE2b-256 | 8d564846565ea86dc932c477fda4d1a399677f1bd58581b705f8ad00c9b338ce |
File details
Details for the file ExGrads-0.1.2-py3.8.egg
.
File metadata
- Download URL: ExGrads-0.1.2-py3.8.egg
- Upload date:
- Size: 6.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e473298cce9793e5a078dacc27cd286d635679273c76b410da0a04cc6b63d47 |
|
MD5 | 2a9df7aa8a9d0636903c95d90e7f9d5e |
|
BLAKE2b-256 | 99cf16965201b3264ea3119d35c5dbfb92aab89be516832bf914fb7a41b86aa6 |
File details
Details for the file ExGrads-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: ExGrads-0.1.2-py3-none-any.whl
- Upload date:
- Size: 4.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac917ae4b850325b32739739c355b18ccb5d00c9bea7eb54de6062ba238eac8b |
|
MD5 | 91cbbdffcc393ee0520f0e8fd3e41dec |
|
BLAKE2b-256 | 7a2cee4f913b756472be16360fe342a8ebea68f33c1252a15d492a003d6abd35 |