calculate example-wise gradient
Project description
this repository is still under construction (2021/07/21)
ExGrads
This repository provides a hook script: calculating Example-wise Gradients efficiently.
Note
This script use the work as an important reference.
I think it is the great first step to handle per-example gradients efficiently.
I'd like to express my respect for the step.
Features of This Script
- Calculate example-wise gradient efficiently
There is no method calculating Hessian in contrast to the referenced work. - Handle general modules
Including Linear, Conv2d, BatchNorm2d, and BatchNorm1d. More modules will be added soon. - How to use this script in practice
How to Use
import torch
import exgrads as ExGrads
batch,dim,label = 5,3,2
x = torch.randn(batch,dim) #: inputs
y = torch.randint(low=0,high=label-1,size=(batch,)) #: outputs
model = torch.nn.Sequential(torch.nn.Linear(dim, label)) #: PyTorch model
loss_fn = torch.nn.functional.cross_entropy #: loss function
ExGrads.register(model)
model.zero_grad()
loss_fn(model(x), y).backward()
# param.grad: gradient averaged over the batch
# param.grad1[i]: gradient of i-th example
for param in model.parameters():
assert(torch.allclose(param.grad1.sum(dim=0), param.grad))
ExGrads.deregister(model)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
ExGrads-0.1.3-py3.8.egg
(8.4 kB
view details)
File details
Details for the file ExGrads-0.1.3-py3.8.egg
.
File metadata
- Download URL: ExGrads-0.1.3-py3.8.egg
- Upload date:
- Size: 8.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cfa997de7d9af53cdf7705df8efc210c483e78752b3d9cee03a22fd1e4504546 |
|
MD5 | 51a2de94e80276a8daa67035ca3ced49 |
|
BLAKE2b-256 | 2083f788297f8eaaaab8abbeec39925fefb6ba0b0ce60988140ef3d911eae39e |