Skip to main content

Auto-differentiable line-by-line spectral modeling of exoplanets/brown dwarfs using JAX.

Project description

ExoJAX

License Docs arxiv paper

Auto-differentiable line-by-line spectral modelling of exoplanets/brown dwarfs/M dwarfs using JAX. Read the docs 🐕. In short, ExoJAX allows you to do gradient based optimisation and HMC NUTS fitting using the latest database.

ExoJAX is at least compatible with

Functions

Voigt Profile :heavy_check_mark:
from exojax.spec import voigt
nu=numpy.linspace(-10,10,100)
voigt(nu,1.0,2.0) #sigma_D=1.0, gamma_L=2.0
Cross Section using HITRAN/HITEMP/ExoMol :heavy_check_mark:
from exojax.utils.grids import wavenumber_grid
from exojax.spec.api import MdbExomol
from exojax.spec.opacalc import OpaPremodit

from jax.config import config
config.update("jax_enable_x64", True)

nu_grid,wav,res=wavenumber_grid(1900.0,2300.0,200000,xsmode="premodit",unit="cm-1",)
mdb = MdbExomol(".database/CO/12C-16O/Li2015",nu_grid)
opa = OpaPremodit(mdb,nu_grid,auto_trange=[900.0,1100.0])
xsv = opa.xsvector(1000.0, 1.0) # cross section for 1000K, 1 bar
Do you just want to plot the line strength at T=1000K?
mdb.change_reference_temperature(1000.) # at 1000K
plt.plot(mdb.nu_lines,mdb.line_strength_ref,".")
Emission Spectrum :heavy_check_mark:
art = ArtEmisPure(nu_grid=nu_grid, pressure_btm=1.e2, pressure_top=1.e-8, nlayer=100)
F = art.run(dtau, Tarr)

See http://secondearths.sakura.ne.jp/exojax/develop/tutorials/get_started.html for the first step!

Installation

pip install exojax

or

python setup.py install
Note on installation w/ GPU support

:books: You need to install CUDA, NumPyro, JAX w/ NVIDIA GPU support, and cuDNN.

  • NumPyro

ExoJAX supports NumPyro >=0.7.0. Please check the required JAX version by NumPyro. In May 2021, it seems the recent version of NumPyro requires jaxlib>=0.1.62 (see setup.py of NumPyro for instance).

  • JAX

Check you cuda version:

nvcc -V

Install such as

pip install --upgrade pip
pip install --upgrade "jax[cuda]" -f https://storage.googleapis.com/jax-releases/jax_releases.html

Please visit here for details.

References

paper

  • Paper I: Kawahara, Kawashima, Masuda, Crossfield, Pannier, van den Bekerom, ApJS 258, 31 (2022)

License

🐈 Copyright 2020-2023 ExoJAX contributors. exojax is publicly available under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

ExoJAX-1.4.2-py2.py3-none-any.whl (6.1 MB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page