Auto-differentiable line-by-line spectral modeling of exoplanets/brown dwarfs using JAX.
Project description
ExoJAX
Auto-differentiable line-by-line spectral modelling of exoplanets/brown dwarfs/M dwarfs using JAX. Read the docs 🐕. In short, ExoJAX allows you to do gradient based optimisation and HMC NUTS fitting using the latest database.
ExoJAX is at least compatible with
Functions
Voigt Profile :heavy_check_mark:
from exojax.spec import voigt
nu=numpy.linspace(-10,10,100)
voigt(nu,1.0,2.0) #sigma_D=1.0, gamma_L=2.0
Cross Section using HITRAN/HITEMP/ExoMol :heavy_check_mark:
from exojax.utils.grids import wavenumber_grid
from exojax.spec.api import MdbExomol
from exojax.spec.opacalc import OpaPremodit
from jax.config import config
config.update("jax_enable_x64", True)
nu_grid,wav,res=wavenumber_grid(1900.0,2300.0,200000,xsmode="premodit",unit="cm-1",)
mdb = MdbExomol(".database/CO/12C-16O/Li2015",nu_grid)
opa = OpaPremodit(mdb,nu_grid,auto_trange=[900.0,1100.0])
xsv = opa.xsvector(1000.0, 1.0) # cross section for 1000K, 1 bar
Do you just want to plot the line strength at T=1000K?
mdb.change_reference_temperature(1000.) # at 1000K
plt.plot(mdb.nu_lines,mdb.line_strength_ref,".")
Emission Spectrum :heavy_check_mark:
art = ArtEmisPure(nu_grid=nu_grid, pressure_btm=1.e2, pressure_top=1.e-8, nlayer=100)
F = art.run(dtau, Tarr)
See http://secondearths.sakura.ne.jp/exojax/develop/tutorials/get_started.html for the first step!
Installation
pip install exojax
or
python setup.py install
Note on installation w/ GPU support
:books: You need to install CUDA, NumPyro, JAX w/ NVIDIA GPU support, and cuDNN.
- NumPyro
ExoJAX supports NumPyro >=0.7.0. Please check the required JAX version by NumPyro. In May 2021, it seems the recent version of NumPyro requires jaxlib>=0.1.62 (see setup.py of NumPyro for instance).
- JAX
Check you cuda version:
nvcc -V
Install such as
pip install --upgrade pip
pip install --upgrade "jax[cuda]" -f https://storage.googleapis.com/jax-releases/jax_releases.html
Please visit here for details.
References
- Paper I: Kawahara, Kawashima, Masuda, Crossfield, Pannier, van den Bekerom, ApJS 258, 31 (2022)
License
🐈 Copyright 2020-2023 ExoJAX contributors. exojax is publicly available under the MIT license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Hashes for ExoJAX-1.4.2-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6c8c18d19654a351880a7b4a029c42018ce292987065f305246e25da6be9d6d7 |
|
MD5 | 82b1c9a35c5dd4069355f82ebba1f9a4 |
|
BLAKE2b-256 | e7da7c6b697fe7e4a6380e7d95283bbc376261af0da6922599eec5da499babf2 |