Skip to main content

Server and Connector for RabbitMQ

Project description

FLF

RabbitMQ server and client

Installation

To install execute command:

pip install FLF --ignore-installed

Or you can install from source:

python setup.py install

Documentation

Procedure

  • Constructor: Procedure(function, schema=None)
  • Functions: is_valid(data: Parameters) -> bool, call_function(data: Parameters) -> Parameters

Parameters

  • Constructor: Parameters(params=None, files=None)
  • Fields: params, files

RpcServer

Server-node for RabbitMQ

Parameters:

  • host: host of queue
  • port: port of queue
  • username: username of queue
  • password: password of queue
  • procedures: dictionary with server's procedures in format: { str: FLF.Parameters }.
    Each procedure has fields params (dict of parameters) and files (dict of binary objects) and
    returns data in same format (FLF.Parameters(params, files))
  • [ error_callback ]: callable with 3 arguments: exception_name, description and traceback.
    Being called on error happening. By default does nothing

Functions:

  • begin()

Example:

import io

from PIL import Image

import FLF


def add(params, files):
    result_params = {"success": True, "sum": params["a"] + params["b"]}
    result_files = dict()
    
    return result_params, result_files


def get_add_schema():
    return {
        "$schema": "http://json-schema.org/draft-04/schema",
        "id": "http://example.com/example.json",
        "type": "object",
        "required": [
            "a",
            "b"
        ],
        "properties": {
            "a": {
                "type": "integer"
            },
            "b": {
                "type": "integer"
            }
        },
        "additionalProperties": False
    }


def process_image(params, files):
    pil_image = Image.frombuffer("RGB", (params["width"], params["height"]), files["image"])
    image_gray = pil_image.convert("LA")
    
    buffer = io.BytesIO()
    image_gray.save(buffer, format='PNG')
    image_gray_bytes = buffer.getvalue()
    
    return {"success": True}, {"gray_image": image_gray_bytes}


def get_process_image_schema():
    return {
        "$schema": "http://json-schema.org/draft-04/schema",
        "id": "http://example.com/example.json",
        "type": "object",
        "required": [
            "width",
            "height"
        ],
        "properties": {
            "width": {
                "type": "integer"
            },
            "height": {
                "type": "integer"
            }
        },
        "additionalProperties": False
    }


def super_error_callback(exception_name, description, traceback):
    print("OH MY GOD, SOMETHING BAD HAPPENED!")
    print(exception_name, ":", description)
    print(traceback)


def main():
    app = FLF.RpcServer(host="google.com", port=12345, username="mister.robot", password="ecorp.zuck",
                        procedures={
                            "add": FLF.Procedure(add, get_add_schema()),
                            "process_image": FLF.Procedure(process_image, get_process_image_schema())
                        }, error_callback=super_error_callback)
    app.begin()


if __name__ == "__main__":
    main()

RpcConnector

Client-node for RabbitMQ

Parameters:

  • host: host of queue
  • port: port of queue
  • username: username of queue
  • password: password of queue
  • [ error_callback ]: callable with 3 arguments: exception_name, description and traceback.
    Being called on error happening

Functions:

  • begin()
  • call_procedure(name, data: Parameters) -> Parameters

Example:

import FLF


def super_error_callback(exception_name, description, traceback):
    print("OH MY GOD, SOMETHING BAD HAPPENED ON CLIENT!")
    print(exception_name, ":", description)
    print(traceback)


def main():
    app = FLF.RpcConnector(host="google.com", port=12345, username="mister.robot", password="ecorp.zuck",
                           error_callback=super_error_callback)
    app.begin()
    
    result: FLF.Parameters = app.call_procedure("add", FLF.Parameters({"a": 22, "b": 33}))
    print("Sum is:", result.params["sum"])
    
    with open("image.jpg", "rb") as f:
        image_bytes = f.read()
    result: FLF.Parameters = app.call_procedure("process_image", FLF.Parameters({"width": 500, "height": 500},
                                                                    {"image": image_bytes}))
    
    with open("image_gray.png", "wb+") as f:
        f.write(result.files["gray_image"])


if __name__ == "__main__":
    main()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

FLF-1.2.5.tar.gz (6.2 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page