Skip to main content

A package for flow-cytometry simulations.

Project description

FlowCyPy Logo

Meta

Python version

Documentation Status

FlowCyPy on Google colab

Testing

Unittest Status

Unittest coverage

PyPi

PyPi

PyPi download statistics

Overview

FlowCyPy is a robust Python package designed to simulate the behavior of a flow cytometer. By simulating realistic Forward Scatter (FSC) and Side Scatter (SSC) signals—complete with noise, baseline shifts, and signal saturation—FlowCyPy provides a detailed model of flow cytometry experiments. Ideal for researchers and engineers, it offers an intuitive and configurable platform for studying scattering phenomena and detector responses in flow cytometry setups.

Features

  • Particle Event Simulation: Generate realistic FSC and SSC signals with configurable parameters.

  • Noise & Baseline Shift Modeling: Add Gaussian noise and baseline shifts to simulate real-world experimental conditions.

  • Signal Saturation: Simulate detector saturation to reflect real-life limitations.

  • Signal Digitization: Discretize continuous signals into specified bins for deeper analysis.

  • Advanced Plotting: Customize signal visualization with multi-channel plot support.

  • Fully Configurable: Customize particle size distributions, flow parameters, and detector setups.

Installation

You can easily install FlowCyPy via pip:

pip install FlowCyPy

Requirements

FlowCyPy requires Python 3.10 or higher and the following dependencies:

  • numpy

  • scipy

  • pint

  • tabulate

  • seaborn

  • MPSPlots

  • PyMieSim

  • pydantic>=2.6.3

Quick Start Example

Below is an example of how to simulate particle events and generate flow cytometry signals using FlowCyPy:

import numpy as np
from FlowCyPy import FlowCytometer, Scatterer, Analyzer, Detector, Source, FlowCell
from FlowCyPy import distribution
from FlowCyPy import peak_finder
from FlowCyPy.units import particle, milliliter, nanometer, RIU, second, micrometer, millisecond, meter

np.random.seed(3)

flow_cell = FlowCell(
    flow_speed=7.56 * meter / second,
    flow_area=(10 * micrometer) ** 2,
    run_time=0.1 * millisecond
)

scatterer = Scatterer(medium_refractive_index=1.33 * RIU)

scatterer.add_population(
    name='EV',
    concentration=2e+9 * particle / milliliter / 10,
    size=distribution.RosinRammler(
        characteristic_size=50 * nanometer,
        spread=10.5
    ),
    refractive_index=distribution.Normal(
        mean=1.45 * RIU,
        std_dev=0.02 * RIU
    )
)

scatterer.initialize(flow_cell=flow_cell)

scatterer.print_properties()
scatterer.plot()

from FlowCyPy.units import milliwatt, AU
source = Source(
    numerical_aperture=0.3 * AU,
    wavelength=800 * nanometer,
    optical_power=100 * milliwatt
)

source.print_properties()  # Print the laser source properties

# Step 5: Configure Detectors
# Side scatter detector
from FlowCyPy.units import degree, watt, ampere, millivolt, ohm, kelvin, milliampere, megahertz
detector_0 = Detector(
    name='side',
    phi_angle=90 * degree,
    numerical_aperture=1.2 * AU,
    responsitivity=1 * ampere / watt,
    sampling_freq=60 * megahertz,
    saturation_level=1 * millivolt,
    n_bins='16bit',
    resistance=50 * ohm,
    dark_current=0.1 * milliampere,
    temperature=300 * kelvin
)

# Forward scatter detector
detector_1 = Detector(
    name='forward',
    phi_angle=0 * degree,
    numerical_aperture=1.2 * AU,
    responsitivity=1 * ampere / watt,
    sampling_freq=60 * megahertz,
    saturation_level=1 * millivolt,
    n_bins='16bit',
    resistance=50 * ohm,
    dark_current=0.1 * milliampere,
    temperature=300 * kelvin
)

detector_1.print_properties()

cytometer = FlowCytometer(
    coupling_mechanism='mie',
    source=source,
    scatterer=scatterer,
    detectors=[detector_0, detector_1]
)

cytometer.simulate_pulse()

cytometer.plot()

The plot produced will resemble the following:

example_3

Developer Guide

For developers or contributors who want to work on FlowCyPy, follow the steps below to install the package locally, run tests, and build the documentation.

### 1. Clone the Repository

First, clone the repository:

git clone https://github.com/MartinPdeS/FlowCyPy.git
cd FlowCyPy

### 2. Install Locally

Install the package in editable mode along with the testing and documentation dependencies:

pip install -e .[testing,documentation]

### 3. Running Tests

To run the tests, use pytest with coverage:

pytest

This will generate a coverage report in htmlcov/index.html.

### 4. Building Documentation

To build the documentation locally using Sphinx, follow these steps:

cd docs
make html

Once completed, the HTML documentation will be available in the docs/_build/html directory.

Additional Examples

Explore a variety of use cases and configurations in the Examples section of the documentation, including:

Density Plots for Large and Small Scatterers

example_0

Raw Signal as measured from the detector

example_1

Peak finder analysis

example_2

Scatter Density Plot

example_3

Contributions

FlowCyPy is under active development, and contributions are highly encouraged! Feel free to reach out for collaboration opportunities or to provide feedback.

Contact Information

As of 2024, the project is still under development. If you want to collaborate, it would be a pleasure! I encourage you to contact me.

FlowCell was written by Martin Poinsinet de Sivry-Houle .

Email:martin.poinsinet.de.sivry@gmail.ca .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flowcypy-0.2.3.tar.gz (3.6 MB view details)

Uploaded Source

Built Distribution

FlowCyPy-0.2.3-py3-none-any.whl (51.6 kB view details)

Uploaded Python 3

File details

Details for the file flowcypy-0.2.3.tar.gz.

File metadata

  • Download URL: flowcypy-0.2.3.tar.gz
  • Upload date:
  • Size: 3.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for flowcypy-0.2.3.tar.gz
Algorithm Hash digest
SHA256 ff152c82c1254bc1684e77f164668610f0efa06589e0f01e2f9fe3d31fd5139f
MD5 26bcc3acd00cb54ff5ee3108fcc4c9e4
BLAKE2b-256 b636f83944ae1d387f6f92c6e5af81a866ef68647823bf1ec830c3afb821787b

See more details on using hashes here.

File details

Details for the file FlowCyPy-0.2.3-py3-none-any.whl.

File metadata

  • Download URL: FlowCyPy-0.2.3-py3-none-any.whl
  • Upload date:
  • Size: 51.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for FlowCyPy-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 944c31e6455ed7642e6dff57b7503f81305f55e3d74ef881b09f93139446e700
MD5 2f0f4c76028f76cc61f8804f1b1f8387
BLAKE2b-256 38ef7a04761f50d1b355b0d3f8ae3d0e485b94f02284c88033c4abf37992c779

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page