Skip to main content

Fast & Flexible Random Value Generators

Project description

Fortuna: Fast & Flexible Random Generators

Fortuna replaces some of the functionality of Python's builtin Random module with specialized high performance functions, often achieving 10x performance. However, the more interesting bits of Fortuna are found in the high-level abstractions like FlexCat and QuantumMonty.

I  Fortuna Core Functions
     a. Random Numbers
     b. Random Truth
     c. Random Sequence Values
     d. Random Table Values
     e. Utility Functions
II  Fortuna Abstraction Classes
     a. Random Cycle
     b. Quantum Monty
     c. Weighted Choice
     d. Flex Cat
III Test Suite
IV  Development Log
V   Legal Stuff... it's free and open, enjoy.

Fortuna Random Functions

Random Numbers

Fortuna.random_range(lo: int, hi: int) -> int. Returns a random integer in range [lo..hi] inclusive. Up to 15x faster than random.randint(). Flat uniform distribution.

Fortuna.random_below(num: int) -> int. Returns a random integer in the exclusive range [0..num) for positive values of num. Flat uniform distribution.

Fortuna.d(sides: int) -> int. Represents a single die roll of a given size die. Returns a random integer in the range [1..sides]. Flat uniform distribution.

Fortuna.dice(rolls: int, sides: int) -> int. Returns a random integer in range [X..Y] where X = rolls and Y = rolls * sides. The return value represents the sum of multiple rolls of the same size die. Geometric distribution based on the number and size of the dice rolled. Complexity scales primarily with the number of rolls, not the size of the dice.

Fortuna.plus_or_minus(num: int) -> int. Negative and positive input values of num will produce equivalent distributions. Returns a random integer in range [-num..num]. Flat uniform distribution.

Fortuna.plus_or_minus_linear(num: int) -> int. Negative and positive input values of num will produce equivalent distributions. Returns a random integer in range [-num..num]. Zero peak geometric distribution, up triangle.

Fortuna.plus_or_minus_curve(num: int, bounded: bool=True) -> int. Negative and positive input values of num will produce equivalent distributions. Returns a random integer in range [-num..num]. If bounded is False, less than 0.1% of the results will fall outside the target range by up to +/- num. This will not change the overall shape of the distribution curve. Zero peak gaussian distribution, stretched bell curve: mean = 0, variance = num / pi.

Fortuna.zero_flat(num: int) -> int. Returns a random integer in range [0..num]. Flat uniform distribution.

Fortuna.zero_cool(num: int) -> int. Returns a random integer in range [0..num]. Zero peak, geometric distribution, half triangle.

Fortuna.zero_extreme(num: int) -> int. Returns a random integer in range [0..num]. Zero peak, gaussian distribution, half bell curve: mean = 0, variance = num / pi.

Fortuna.max_cool(num: int) -> int. Returns a random integer in range [0..num]. Max peak (num), geometric distribution, half triangle.

Fortuna.max_extreme(num: int) -> int. Returns a random integer in range [0..num]. Max peak (num), gaussian distribution, half bell curve: mean = num, variance = num / pi.

Fortuna.mostly_middle(num: int) -> int. Returns a random integer in range [0..num]. Middle peak (num / 2), geometric distribution, up triangle. Ranges that span an even number of values will have two dominant values in the middle, this will guarantee that the probability distribution is always symmetrical.

Fortuna.mostly_center(num: int) -> int. Returns a random integer in range [0..num]. Middle peak (num / 2), gaussian distribution, bell curve: mean = num / 2, variance = num / pi.

Random Truth

Fortuna.percent_true(num: int) -> bool. Always returns False if num is 0 or less, always returns True if num is 100 or more. Any value of num in range [1..99] will produce True or False based on the value of num - the probability of True as a percentage.

Random Sequence Values

Fortuna.random_value(arr) -> value. Returns a random value from a sequence (list or tuple), uniform distribution, non-destructive. Up to 10x faster than random.choice().

Fortuna.pop_random_value(arr: list) -> value. Returns and removes a random value from a sequence list, uniform distribution, destructive. Not included in the test suite due to it's destructive nature. This is the only destructive function in the module, use with care. It will raise an error if the list is empty.

Random Table Values

Fortuna.cumulative_weighted_choice(table) -> value. Core function for the WeightedChoice base class. Produces a custom distribution of values based on cumulative weights. Requires input format: [(weight, value), ... ] sorted in ascending order by weight. Weights must be unique positive integers. See WeightedChoice class for a more comprehensive solution that verifies and optimizes the table. Up to 15x faster than random.choices()

Utility Functions

Fortuna.min_max(num: int, lo: int, hi: int) -> int. Used to force a number in to the range [lo..hi]. Returns num if it is already in the proper range. Returns lo if num is less than lo. Returns hi if num is greater than hi.

Fortuna.analytic_continuation(func: staticmethod, num: int) -> int. Used to map a positive only function to the negative number line for complete input domain coverage. The "C" version of this function is used throughout the Fortuna extension. The function to be analytically continued must take an integer as input and return an integer.

Fortuna Random Classes

Sequence Wrappers

Random Cycle: The Truffle Shuffle

Returns a random value from the sequence. Produces a uniform distribution with no consecutive duplicates and relatively few nearly-consecutive duplicates. Longer sequences will naturally push duplicates even farther apart. This behavior gives rise to output sequences that seem much less mechanical than other random value sequences.

  • Constructor takes a copy of a sequence (list or tuple) of arbitrary values.
  • Sequence length must be greater than three, best if ten or more.
  • Values can be any Python object that can be passed around.
  • Features continuous smart micro-shuffling: The Truffle Shuffle.
  • Performance scales by some small fraction of the length of the sequence.
from Fortuna import RandomCycle


random_cycle = RandomCycle(["Alpha", "Beta", "Delta", "Eta", "Gamma", "Kappa", "Zeta"])

random_cycle()  # returns a random value, cycled uniform distribution.
random_cycle(n_samples=10)  # returns a list of 10 random values, cycled uniform distribution.

The Quantum Monty

A set of strategies for producing random values from a sequence where the probability of each value is based on the monty you choose. For example: the mostly_front monty produces random values where the beginning of the sequence is geometrically more common than the back. The Quantum Monty Algorithm results from overlapping the probability waves of six of the other eight methods. The distribution it produces is a gentle curve with a bump in the middle.

  • Constructor takes a copy of a sequence (list or tuple) of arbitrary values.
  • Sequence length must be greater than three, best if ten or more.
  • Values can be any Python object that can be passed around... string, int, list, function etc.
  • Performance scales by some tiny fraction of the length of the sequence. Method scaling may vary slightly.
from Fortuna import QuantumMonty


quantum_monty = QuantumMonty(["Alpha", "Beta", "Delta", "Eta", "Gamma", "Kappa", "Zeta"])

# Each of the following methods will return a random value from the sequence.
quantum_monty.mostly_front()    # Mostly from the front of the list (geometric descending)
quantum_monty.mostly_middle()   # Mostly from the middle of the list (geometric pyramid)
quantum_monty.mostly_back()     # Mostly from the back of the list (geometric ascending)
quantum_monty.mostly_first()    # Mostly from the very front of the list (stretched gaussian descending)
quantum_monty.mostly_center()   # Mostly from the very center of the list (stretched gaussian bell curve)
quantum_monty.mostly_last()     # Mostly from the very back of the list (stretched gaussian ascending)
quantum_monty.quantum_monty()   # Quantum Monty Algorithm. Overlapping probability waves.
quantum_monty.mostly_flat()     # Uniform flat distribution (see Fortuna.random_value)
quantum_monty.mostly_cycle()    # Cycled uniform flat distribution (see RandomCycle)

# Each of the methods can return a list of values as follows:
quantum_monty.mostly_cycle(n_samples=10)    # Returns a list of 10 random samples.

Table & Dictionary Wrappers

Weighted Choice: Custom Rarity

Two strategies for selecting random values from a sequence where rarity counts. Both produce a custom distribution of values based on the weights of the values. Up to 10x faster than random.choices()

  • Constructor takes a copy of a sequence of weighted value pairs... [(weight, value), ... ]
  • Automatically optimizes the sequence for correctness and optimal call performance for large data sets.
  • The sequence must not be empty, and each pair must have a weight and a value.
  • Weights must be integers. A future release may allow weights to be floats.
  • Values can be any Python object that can be passed around... string, int, list, function etc.
  • Weighted Values should be unique, pass non_unique=True during instantiation to bypass this check. As a result: non-unique values will have their probabilities logically accumulated. Relative Weights are summed, Cumulative Weights are over-lapped, but the effect is the same.
  • Performance scales by some fraction of the length of the sequence.

The following examples produce equivalent distributions with comparable performance. The choice to use one strategy over the other is purely about which one suits you or your data best. Relative weights are easier to understand at a glance. However, many RPG Treasure Tables map rather nicely to a cumulative weighted strategy.

Cumulative Weight Strategy

Note: Logic dictates Cumulative Weights must be unique!

from Fortuna import CumulativeWeightedChoice


cumulative_weighted_choice = CumulativeWeightedChoice((
    (7, "Apple"),
    (11, "Banana"),
    (13, "Cherry"),
    (23, "Grape"),
    (26, "Lime"),
    (30, "Orange"),
))

cumulative_weighted_choice()  # returns a weighted random value
cumulative_weighted_choice(n_samples=10)  # returns a list of 10 weighted random values
Relative Weight Strategy
from Fortuna import RelativeWeightedChoice


relative_weighted_choice = RelativeWeightedChoice((
    (7, "Apple"),
    (4, "Banana"),
    (2, "Cherry"),
    (10, "Grape"),
    (3, "Lime"),
    (4, "Orange"),
))

relative_weighted_choice()  # returns a weighted random value
relative_weighted_choice(n_samples=10)  # returns a list of 10 weighted random values

FlexCat

FlexCat wraps a dictionary of sequences. When the primary method is called it returns a random value from one of the sequences. It takes two optional keyword arguments to specify the algorithms used to make random selections.

By default, FlexCat will use y_bias="front" and x_bias="cycle", this will make the top of the data structure geometrically more common than the bottom and cycle the sequences. This config is known as Top Cat, it produces a descending-step cycled distribution for the data. Many other combinations are possible (9 algorithms, 2 dimensions = 81 configs).

FlexCat requires a dict with at least three sequences with at least 3 values each. Even though the total value limit is much higher, data sets with more than one million values are not recommended for all platforms.

FlexCat generally works best if all sequences in a set are sufficiently large and close to the same size, this is not enforced. Values in a shorter sequence will naturally be more common, since probability balancing between categories is not considered. For example: in a flat/flat set where it might be expected that all values have equal probability (and they would, given sequences with equal length). However, values in a sequence half the size of the others in the set would have exactly double the probability of the other items. This effect scales with the size delta and affects all nine methods. Cross category balancing might be considered for a future release.

Algorithm Options: See QuantumMonty & RandomCycle for more details.

  • front, geometric descending
  • middle, geometric pyramid
  • back, geometric ascending
  • first, stretched gaussian descending
  • center, stretched gaussian bell
  • last, stretched gaussian ascending
  • flat, uniform flat
  • cycle, RandomCycle uniform flat
  • monty, The Quantum Monty
from Fortuna import FlexCat


flex_cat = FlexCat({
    "Cat_A": ("A1", "A2", "A3", "A4", "A5"),
    "Cat_B": ("B1", "B2", "B3", "B4", "B5"),
    "Cat_C": ("C1", "C2", "C3", "C4", "C5"),
}, y_bias="cycle", x_bias="cycle")

flex_cat()          # returns a random value from a random category

flex_cat("Cat_A")   # returns a random value from "Cat_A"
flex_cat("Cat_B")   #                             "Cat_B"
flex_cat("Cat_C")   #                             "Cat_C"

flex_cat(n_samples=10)              # returns a list of 10 random values
flex_cat("Cat_A", n_samples=10)     # returns a list of 10 random values from "Cat_A"

Fortuna Test Suite

Testbed:

  • Software macOS 10.14.1, Python 3.7.1, Fortuna Beta
  • Hardware Intel 2.7GHz i7 Skylake, 16GB RAM, 1TB SSD
Fortuna 0.20.6 Sample Distribution and Performance Test Suite

Random Numbers
-------------------------------------------------------------------------

Base Case:
random.randint(1, 10) x 100000: Total: 130.574 ms, Average: 1305.74 nano
 1: 10.074%
 2: 9.966%
 3: 10.015%
 4: 10.087%
 5: 10.021%
 6: 9.979%
 7: 10.03%
 8: 9.945%
 9: 9.888%
 10: 9.995%

random_range(1, 10) x 100000: Total: 8.178 ms, Average: 81.78 nano
 1: 10.137%
 2: 9.894%
 3: 9.952%
 4: 9.992%
 5: 10.097%
 6: 9.993%
 7: 9.846%
 8: 9.985%
 9: 10.281%
 10: 9.823%

Base Case:
random.randrange(10) x 100000: Total: 91.247 ms, Average: 912.47 nano
 0: 9.934%
 1: 9.99%
 2: 10.015%
 3: 9.997%
 4: 10.119%
 5: 9.91%
 6: 10.112%
 7: 9.876%
 8: 9.933%
 9: 10.114%

random_below(10) x 100000: Total: 7.907 ms, Average: 79.07 nano
 0: 10.085%
 1: 9.984%
 2: 9.899%
 3: 9.857%
 4: 9.971%
 5: 9.965%
 6: 10.154%
 7: 10.229%
 8: 10.008%
 9: 9.848%

d(10) x 100000: Total: 8.013 ms, Average: 80.13 nano
 1: 10.182%
 2: 10.001%
 3: 10.153%
 4: 9.878%
 5: 10.015%
 6: 9.871%
 7: 10.147%
 8: 9.789%
 9: 9.89%
 10: 10.074%

dice(2, 6) x 100000: Total: 10.479 ms, Average: 104.79 nano
 2: 2.754%
 3: 5.631%
 4: 8.491%
 5: 11.086%
 6: 13.845%
 7: 16.565%
 8: 13.767%
 9: 11.041%
 10: 8.377%
 11: 5.564%
 12: 2.879%

plus_or_minus(5) x 100000: Total: 7.716 ms, Average: 77.16 nano
 -5: 9.203%
 -4: 9.193%
 -3: 9.118%
 -2: 9.248%
 -1: 8.979%
 0: 9.121%
 1: 9.036%
 2: 9.168%
 3: 8.994%
 4: 8.955%
 5: 8.985%

plus_or_minus_linear(5) x 100000: Total: 10.249 ms, Average: 102.49 nano
 -5: 2.798%
 -4: 5.472%
 -3: 8.328%
 -2: 11.079%
 -1: 13.776%
 0: 16.887%
 1: 14.004%
 2: 11.088%
 3: 8.468%
 4: 5.455%
 5: 2.645%

plus_or_minus_curve(5) x 100000: Total: 12.045 ms, Average: 120.45 nano
 -5: 0.205%
 -4: 1.158%
 -3: 4.379%
 -2: 11.729%
 -1: 20.196%
 0: 24.719%
 1: 20.293%
 2: 11.592%
 3: 4.44%
 4: 1.13%
 5: 0.159%

plus_or_minus_curve(5, bounded=False) x 100000: Total: 13.082 ms, Average: 130.82 nano
 -7: 0.003%
 -6: 0.028%
 -5: 0.215%
 -4: 1.135%
 -3: 4.378%
 -2: 11.449%
 -1: 20.479%
 0: 24.518%
 1: 20.473%
 2: 11.377%
 3: 4.532%
 4: 1.178%
 5: 0.206%
 6: 0.027%
 7: 0.002%

zero_flat(10) x 100000: Total: 7.503 ms, Average: 75.03 nano
 0: 9.151%
 1: 8.952%
 2: 9.053%
 3: 9.143%
 4: 9.179%
 5: 9.03%
 6: 9.1%
 7: 9.286%
 8: 8.978%
 9: 9.092%
 10: 9.036%

zero_cool(10) x 100000: Total: 16.885 ms, Average: 168.85 nano
 0: 16.588%
 1: 15.124%
 2: 13.679%
 3: 12.075%
 4: 10.606%
 5: 9.107%
 6: 7.625%
 7: 6.073%
 8: 4.511%
 9: 3.06%
 10: 1.552%

zero_extreme(10) x 100000: Total: 18.569 ms, Average: 185.69 nano
 0: 22.292%
 1: 21.177%
 2: 18.181%
 3: 14.34%
 4: 10.101%
 5: 6.543%
 6: 3.833%
 7: 1.989%
 8: 0.973%
 9: 0.408%
 10: 0.163%

max_cool(10) x 100000: Total: 16.728 ms, Average: 167.28 nano
 0: 1.495%
 1: 3.068%
 2: 4.443%
 3: 6.052%
 4: 7.615%
 5: 9.248%
 6: 10.695%
 7: 11.867%
 8: 13.741%
 9: 15.236%
 10: 16.54%

max_extreme(10) x 100000: Total: 18.431 ms, Average: 184.31 nano
 0: 0.144%
 1: 0.438%
 2: 0.994%
 3: 2.022%
 4: 3.895%
 5: 6.617%
 6: 10.105%
 7: 14.214%
 8: 18.263%
 9: 21.056%
 10: 22.252%

mostly_middle(10) x 100000: Total: 10.521 ms, Average: 105.21 nano
 0: 2.706%
 1: 5.622%
 2: 8.353%
 3: 11.09%
 4: 13.966%
 5: 16.489%
 6: 13.923%
 7: 11.006%
 8: 8.378%
 9: 5.594%
 10: 2.873%

mostly_center(10) x 100000: Total: 12.085 ms, Average: 120.85 nano
 0: 0.218%
 1: 1.15%
 2: 4.458%
 3: 11.371%
 4: 20.397%
 5: 24.565%
 6: 20.495%
 7: 11.507%
 8: 4.458%
 9: 1.178%
 10: 0.203%


Random Truth
-------------------------------------------------------------------------

percent_true(25) x 100000: Total: 7.091 ms, Average: 70.91 nano
 False: 75.263%
 True: 24.737%


Random Values from a Sequence
-------------------------------------------------------------------------

some_list = ('Alpha', 'Beta', 'Delta', 'Eta', 'Gamma', 'Kappa', 'Zeta')

Base Case:
random.choice(some_list) x 100000: Total: 73.907 ms, Average: 739.07 nano
 Alpha: 14.649%
 Beta: 14.129%
 Delta: 14.336%
 Eta: 14.151%
 Gamma: 14.25%
 Kappa: 14.323%
 Zeta: 14.162%

random_value(some_list) x 100000: Total: 6.846 ms, Average: 68.46 nano
 Alpha: 14.14%
 Beta: 14.215%
 Delta: 14.298%
 Eta: 14.421%
 Gamma: 14.364%
 Kappa: 14.228%
 Zeta: 14.334%

monty = Fortuna.QuantumMonty(
	('Alpha', 'Beta', 'Delta', 'Eta', 'Gamma', 'Kappa', 'Zeta')
)

monty.mostly_flat() x 100000: Total: 13.357 ms, Average: 133.57 nano
 Alpha: 14.544%
 Beta: 14.32%
 Delta: 14.087%
 Eta: 14.146%
 Gamma: 14.369%
 Kappa: 14.32%
 Zeta: 14.214%

monty.mostly_middle() x 100000: Total: 18.938 ms, Average: 189.38 nano
 Alpha: 6.166%
 Beta: 12.499%
 Delta: 18.846%
 Eta: 25.061%
 Gamma: 18.645%
 Kappa: 12.574%
 Zeta: 6.209%

monty.mostly_center() x 100000: Total: 21.856 ms, Average: 218.56 nano
 Alpha: 0.487%
 Beta: 5.35%
 Delta: 24.245%
 Eta: 39.913%
 Gamma: 24.316%
 Kappa: 5.285%
 Zeta: 0.404%

monty.mostly_front() x 100000: Total: 25.156 ms, Average: 251.56 nano
 Alpha: 24.917%
 Beta: 21.529%
 Delta: 17.95%
 Eta: 14.209%
 Gamma: 10.719%
 Kappa: 7.197%
 Zeta: 3.479%

monty.mostly_back() x 100000: Total: 23.854 ms, Average: 238.54 nano
 Alpha: 3.585%
 Beta: 7.178%
 Delta: 10.653%
 Eta: 14.169%
 Gamma: 17.906%
 Kappa: 21.438%
 Zeta: 25.071%

monty.mostly_first() x 100000: Total: 27.294 ms, Average: 272.94 nano
 Alpha: 34.36%
 Beta: 29.884%
 Delta: 19.956%
 Eta: 10.302%
 Gamma: 4.045%
 Kappa: 1.148%
 Zeta: 0.305%

monty.mostly_last() x 100000: Total: 28.348 ms, Average: 283.48 nano
 Alpha: 0.297%
 Beta: 1.234%
 Delta: 4.031%
 Eta: 10.311%
 Gamma: 19.694%
 Kappa: 30.101%
 Zeta: 34.332%

monty.quantum_monty() x 100000: Total: 35.756 ms, Average: 357.56 nano
 Alpha: 11.479%
 Beta: 12.845%
 Delta: 16.006%
 Eta: 19.094%
 Gamma: 15.938%
 Kappa: 12.872%
 Zeta: 11.766%

monty.mostly_cycle() x 100000: Total: 81.999 ms, Average: 819.99 nano
 Alpha: 14.304%
 Beta: 14.273%
 Delta: 14.284%
 Eta: 14.295%
 Gamma: 14.299%
 Kappa: 14.263%
 Zeta: 14.282%

monty.mostly_flat(n_samples=5) -> ['Gamma', 'Gamma', 'Eta', 'Beta', 'Zeta']
monty.mostly_middle(n_samples=5) -> ['Eta', 'Gamma', 'Zeta', 'Kappa', 'Eta']
monty.mostly_center(n_samples=5) -> ['Delta', 'Delta', 'Gamma', 'Delta', 'Delta']
monty.mostly_front(n_samples=5) -> ['Delta', 'Alpha', 'Delta', 'Beta', 'Beta']
monty.mostly_back(n_samples=5) -> ['Delta', 'Gamma', 'Kappa', 'Gamma', 'Kappa']
monty.mostly_first(n_samples=5) -> ['Delta', 'Alpha', 'Beta', 'Delta', 'Delta']
monty.mostly_last(n_samples=5) -> ['Beta', 'Zeta', 'Kappa', 'Kappa', 'Kappa']
monty.mostly_cycle(n_samples=5) -> ['Zeta', 'Alpha', 'Delta', 'Gamma', 'Beta']

random_cycle = Fortuna.RandomCycle(
	('Alpha', 'Beta', 'Delta', 'Eta', 'Gamma', 'Kappa', 'Zeta')
)

random_cycle() x 100000: Total: 72.645 ms, Average: 726.45 nano
 Alpha: 14.278%
 Beta: 14.29%
 Delta: 14.27%
 Eta: 14.259%
 Gamma: 14.357%
 Kappa: 14.234%
 Zeta: 14.312%

random_cycle(n_samples=5) -> ['Kappa', 'Delta', 'Beta', 'Alpha', 'Zeta']


Random Values by Weighted Table
-------------------------------------------------------------------------

population = ('Apple', 'Banana', 'Cherry', 'Grape', 'Lime', 'Orange')
cum_weights = (7, 11, 13, 23, 26, 30)
rel_weights = (7, 4, 2, 10, 3, 4)

Cumulative Base Case:
random.choices(pop, cum_weights=cum_weights) x 100000: Total: 187.335 ms, Average: 1873.35 nano
 Apple: 23.274%
 Banana: 13.498%
 Cherry: 6.649%
 Grape: 33.302%
 Lime: 9.972%
 Orange: 13.305%

Relative Base Case:
random.choices(pop, rel_weights) x 100000: Total: 224.429 ms, Average: 2244.29 nano
 Apple: 23.188%
 Banana: 13.404%
 Cherry: 6.651%
 Grape: 33.256%
 Lime: 10.123%
 Orange: 13.378%

cumulative_table = ((7, 'Apple'), (11, 'Banana'), (13, 'Cherry'), (23, 'Grape'), (26, 'Lime'), (30, 'Orange'))

Fortuna.cumulative_weighted_choice(cumulative_table) x 100000: Total: 14.26 ms, Average: 142.6 nano
 Apple: 23.268%
 Banana: 13.322%
 Cherry: 6.68%
 Grape: 33.399%
 Lime: 10.004%
 Orange: 13.327%

cumulative_choice = CumulativeWeightedChoice(
	((7, 'Apple'), (11, 'Banana'), (13, 'Cherry'), (23, 'Grape'), (26, 'Lime'), (30, 'Orange'))
)

cumulative_choice() x 100000: Total: 29.628 ms, Average: 296.28 nano
 Apple: 23.365%
 Banana: 13.11%
 Cherry: 6.746%
 Grape: 33.368%
 Lime: 10.079%
 Orange: 13.332%

cumulative_choice(n_samples=5) -> ['Grape', 'Cherry', 'Lime', 'Grape', 'Banana']

relative_choice = RelativeWeightedChoice(
	((7, 'Apple'), (4, 'Banana'), (2, 'Cherry'), (10, 'Grape'), (3, 'Lime'), (4, 'Orange'))
)

relative_choice() x 100000: Total: 30.211 ms, Average: 302.11 nano
 Apple: 23.345%
 Banana: 13.248%
 Cherry: 6.491%
 Grape: 33.547%
 Lime: 10.019%
 Orange: 13.35%

relative_choice(n_samples=5) -> ['Orange', 'Apple', 'Orange', 'Grape', 'Cherry']

Random Values by Category
-------------------------------------------------------------------------

flex_cat = FlexCat(
	{'Cat_A': ('A1', 'A2', 'A3'), 'Cat_B': ('B1', 'B2', 'B3'), 'Cat_C': ('C1', 'C2', 'C3')},
	y_bias='front', x_bias='back'
)

flex_cat('Cat_A') x 100000: Total: 41.606 ms, Average: 416.06 nano
 A1: 16.59%
 A2: 33.369%
 A3: 50.041%

flex_cat('Cat_B') x 100000: Total: 41.361 ms, Average: 413.61 nano
 B1: 16.912%
 B2: 33.201%
 B3: 49.887%

flex_cat('Cat_C') x 100000: Total: 40.988 ms, Average: 409.88 nano
 C1: 16.513%
 C2: 33.429%
 C3: 50.058%

flex_cat() x 100000: Total: 61.87 ms, Average: 618.7 nano
 A1: 8.397%
 A2: 16.647%
 A3: 25.148%
 B1: 5.392%
 B2: 11.299%
 B3: 16.477%
 C1: 2.786%
 C2: 5.652%
 C3: 8.202%

flex_cat(n_samples=5) -> ['A3', 'C3', 'C3', 'A3', 'A3']
flex_cat(cat_key='Cat_A', n_samples=5) -> ['A3', 'A3', 'A3', 'A3', 'A3']
flex_cat(cat_key='Cat_B', n_samples=5) -> ['B3', 'B1', 'B3', 'B3', 'B3']
flex_cat(cat_key='Cat_C', n_samples=5) -> ['C2', 'C3', 'C1', 'C2', 'C1']

-------------------------------------------------------------------------
Total Test Time: 2.06 sec

Fortuna Development Log

Fortuna 0.20.7
  • Documentation updated for clarity.
Fortuna 0.20.6
  • Tests updated based on recent changes.
Fortuna 0.20.5, internal
  • Documentation updated based on recent changes.
Fortuna 0.20.4, internal
  • WeightedChoice (both types) can return a list of samples rather than just one, control the length of the list via the n_samples argument.
Fortuna 0.20.3, internal
  • RandomCycle can return a list of samples rather than just one, control the length of the list via the n_samples argument.
Fortuna 0.20.2, internal
  • QuantumMonty can return a list of samples rather than just one, control the length of the list via the n_samples argument.
Fortuna 0.20.1, internal
  • FlexCat can return a list of samples rather than just one, control the length of the list via the n_samples argument.
Fortuna 0.20.0, internal
  • FlexCat now accepts a standard dict as input. The ordered(ness) of dict is now part of the standard in Python 3.7.1. Previously FlexCat required an OrderedDict, now it accepts either and treats them the same.
Fortuna 0.19.7
  • Fixed bug in .../fortuna_extras/fortuna_examples.py.
Fortuna 0.19.6
  • Updated documentation formatting.
  • Small performance tweak for QuantumMonty and FlexCat.
Fortuna 0.19.5
  • Minor documentation update.
Fortuna 0.19.4
  • Minor update to all classes for better debugging.
Fortuna 0.19.3
  • Updated plus_or_minus_curve to allow unbounded output.
Fortuna 0.19.2
  • Internal development cycle.
  • Minor update to FlexCat for better debugging.
Fortuna 0.19.1
  • Internal development cycle.
Fortuna 0.19.0
  • Updated documentation for clarity.
  • MultiCat has been removed, it is replaced by FlexCat.
  • Mostly has been removed, it is replaced by QuantumMonty.
Fortuna 0.18.7
  • Fixed some more README typos.
Fortuna 0.18.6
  • Fixed some README typos.
Fortuna 0.18.5
  • Updated documentation.
  • Fixed another minor test bug.
Fortuna 0.18.4
  • Updated documentation to reflect recent changes.
  • Fixed some small test bugs.
  • Reduced default number of test cycles to 10,000 - down from 100,000.
Fortuna 0.18.3
  • Fixed some minor README typos.
Fortuna 0.18.2
  • Fixed a bug with Fortuna Pure.
Fortuna 0.18.1
  • Fixed some minor typos.
  • Added tests for .../fortuna_extras/fortuna_pure.py
Fortuna 0.18.0
  • Introduced new test format, now includes average call time in nanoseconds.
  • Reduced default number of test cycles to 100,000 - down from 1,000,000.
  • Added pure Python implementation of Fortuna: .../fortuna_extras/fortuna_pure.py
  • Promoted several low level functions to top level.
    • zero_flat(num: int) -> int
    • zero_cool(num: int) -> int
    • zero_extreme(num: int) -> int
    • max_cool(num: int) -> int
    • max_extreme(num: int) -> int
    • analytic_continuation(func: staticmethod, num: int) -> int
    • min_max(num: int, lo: int, hi: int) -> int
Fortuna 0.17.3
  • Internal development cycle.
Fortuna 0.17.2
  • User Requested: dice() and d() functions now support negative numbers as input.
Fortuna 0.17.1
  • Fixed some minor typos.
Fortuna 0.17.0
  • Added QuantumMonty to replace Mostly, same default behavior with more options.
  • Mostly is depreciated and may be removed in a future release.
  • Added FlexCat to replace MultiCat, same default behavior with more options.
  • MultiCat is depreciated and may be removed in a future release.
  • Expanded the Treasure Table example in .../fortuna_extras/fortuna_examples.py
Fortuna 0.16.2
  • Minor refactoring for WeightedChoice.
Fortuna 0.16.1
  • Redesigned fortuna_examples.py to feature a dynamic random magic item generator.
  • Raised cumulative_weighted_choice function to top level.
  • Added test for cumulative_weighted_choice as free function.
  • Updated MultiCat documentation for clarity.
Fortuna 0.16.0
  • Pushed distribution_timer to the .pyx layer.
  • Changed default number of iterations of tests to 1 million, up form 1 hundred thousand.
  • Reordered tests to better match documentation.
  • Added Base Case Fortuna.fast_rand_below.
  • Added Base Case Fortuna.fast_d.
  • Added Base Case Fortuna.fast_dice.
Fortuna 0.15.10
  • Internal Development Cycle
Fortuna 0.15.9
  • Added Base Cases for random.choices()
  • Added Base Case for randint_dice()
Fortuna 0.15.8
  • Clarified MultiCat Test
Fortuna 0.15.7
  • Fixed minor typos.
Fortuna 0.15.6
  • Fixed minor typos.
  • Simplified MultiCat example.
Fortuna 0.15.5
  • Added MultiCat test.
  • Fixed some minor typos in docs.
Fortuna 0.15.4
  • Performance optimization for both WeightedChoice() variants.
  • Cython update provides small performance enhancement across the board.
  • Compilation now leverages Python3 all the way down.
  • MultiCat pushed to the .pyx layer for better performance.
Fortuna 0.15.3
  • Reworked the MultiCat example to include several randomizing strategies working in concert.
  • Added Multi Dice 10d10 performance tests.
  • Updated sudo code in documentation to be more pythonic.
Fortuna 0.15.2
  • Fixed: Linux installation failure.
  • Added: complete source files to the distribution (.cpp .hpp .pyx).
Fortuna 0.15.1
  • Updated & simplified distribution_timer in fortuna_tests.py
  • Readme updated, fixed some typos.
  • Known issue preventing successful installation on some linux platforms.
Fortuna 0.15.0
  • Performance tweaks.
  • Readme updated, added some details.
Fortuna 0.14.1
  • Readme updated, fixed some typos.
Fortuna 0.14.0
  • Fixed a bug where the analytic continuation algorithm caused a rare issue during compilation on some platforms.
Fortuna 0.13.3
  • Fixed Test Bug: percent sign was missing in output distributions.
  • Readme updated: added update history, fixed some typos.
Fortuna 0.13.2
  • Readme updated for even more clarity.
Fortuna 0.13.1
  • Readme updated for clarity.
Fortuna 0.13.0
  • Minor Bug Fixes.
  • Readme updated for aesthetics.
  • Added Tests: .../fortuna_extras/fortuna_tests.py
Fortuna 0.12.0
  • Internal test for future update.
Fortuna 0.11.0
  • Initial Release: Public Beta
Fortuna 0.10.0
  • Module name changed from Dice to Fortuna

Legal Stuff

Fortuna :: Copyright (c) 2018 Broken aka Robert W. Sharp

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

This README.md file shall be included in all copies or portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Fortuna-0.20.9.tar.gz (136.7 kB view details)

Uploaded Source

Built Distribution

Fortuna-0.20.9-cp37-cp37m-macosx_10_9_x86_64.whl (141.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file Fortuna-0.20.9.tar.gz.

File metadata

  • Download URL: Fortuna-0.20.9.tar.gz
  • Upload date:
  • Size: 136.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.1

File hashes

Hashes for Fortuna-0.20.9.tar.gz
Algorithm Hash digest
SHA256 0245b993c4f7f5c29bb0b8e8311a2ff3ff2e3ab7f94ec7de9224ffb142e1f66f
MD5 ce8ba53a9c9bb75cfafb996d16c655b2
BLAKE2b-256 304cc7f5c4c69649f8d75271269ea2a04a12bbd4dd31072f34ff026958e7d9bc

See more details on using hashes here.

Provenance

File details

Details for the file Fortuna-0.20.9-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: Fortuna-0.20.9-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 141.1 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.1

File hashes

Hashes for Fortuna-0.20.9-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c6d6434d2d24bc129cd206593450341991503e365108853a1c877c3e950dbf84
MD5 4b64e07439b35e954d899a9e3724d162
BLAKE2b-256 923a1e885f0acc721db7a6746bab61295c17e1524fd375b8b60fce3d6feaad43

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page