Skip to main content

Custom Random Value Generators

Project description

Fortuna: A Collection of Random Value Generators for Python3

Fortuna's main goal is to provide a quick and easy way to build custom random-value generators for your data. Fortuna also offers a variety of high-performance dice functions and random number generators.

The core functionality of Fortuna is based on the Storm RNG Engine. While Storm is a high quality random engine, Fortuna is not appropriate for cryptography of any kind. Fortuna is meant for games, data science, A.I. and experimental programming, not security. Fortuna is designed for a single threaded environment.

Quick Install

$ pip install Fortuna
$ python3
>>> import Fortuna
>>> Fortuna.d(sides=20)  # d20, returns an int in range [1, 20]
18
>>> Fortuna.dice(rolls=8, sides=6)  # 8d6, returns the sum of eight six-sided dice rolls.
27

Installation may require the following:

  • Python 3.6 or later with dev tools (setuptools, pip, etc.)
  • Cython: pip install Cython - This enables the bridge to C++.
  • Modern C++17 compiler and standard library for your platform.

Sister Projects:

Support these and other random projects: https://www.patreon.com/brokencode


Table of Contents:

  • Numeric Limits
  • Project Terminology
  • Random Generators:
    • Value Generators
      • RandomValue(Collection) -> Callable -> Value
      • TruffleShuffle(Collection) -> Callable -> Value
      • QuantumMonty(Collection) -> Callable -> Value
      • CumulativeWeightedChoice(Table) -> Callable -> Value
      • RelativeWeightedChoice(Table) -> Callable -> Value
      • FlexCat(Matrix) -> Callable -> Value
    • Integer Generators
      • random_below(Integer) -> Integer
      • random_int(Integer, Integer) -> Integer
      • random_range(Integer, Integer, Integer) -> Integer
      • d(Integer) -> Integer
      • dice(Integer, Integer) -> Integer
      • plus_or_minus(Integer) -> Integer
      • plus_or_minus_linear(Integer) -> Integer
      • plus_or_minus_gauss(Integer) -> Integer
    • Index Generators:
      • ZeroCool Specification: f(N) -> [0, N) or f(-N) -> [-N, 0)
      • random_index(Integer) -> Integer
      • front_gauss(Integer) -> Integer
      • middle_gauss(Integer) -> Integer
      • back_gauss(Integer) -> Integer
      • quantum_gauss(Integer) -> Integer
      • front_poisson(Integer) -> Integer
      • middle_poisson(Integer) -> Integer
      • back_poisson(Integer) -> Integer
      • quantum_poisson(Integer) -> Integer
      • front_geometric(Integer) -> Integer
      • middle_geometric(Integer) -> Integer
      • back_geometric(Integer) -> Integer
      • quantum_geometric(Integer) -> Integer
      • quantum_monty(Integer) -> Integer
    • Float Generators
      • canonical() -> Float
      • random_float(Float, Float) -> Float
      • triangular(Float, Float, Float) -> Float
    • Boolean Generator
      • percent_true(Float) -> Boolean
    • Inplace Shuffle
      • shuffle(List) -> None
    • Utilities
      • flatten(Object, *args, Boolean, **kwargs) -> Object
      • smart_clamp(Integer, Integer, Integer) -> Integer
  • Development Log
  • Test Suite Output
  • Legal Information

Numeric Limits:

  • Integer: 64 bit signed integer.
    • Range: ±9223372036854775807, approximately ±9.2 billion billion
  • Float: 64 bit floating point.
    • Range: ±1.7976931348623157e+308
    • Epsilon Delta: 5e-324

Project Terminology:

  • Value: Almost any object in Python can be considered a Value.
    • Expressions, Generators, and F-strings can be wrapped in a lambda for dynamic evaluation.
  • Callable: Any callable object, function, method or lambda.
  • Collection: A group of Values.
    • List, Tuple, Set, etc... Any object that can be converted into a list via list(some_object).
    • Comprehensions that produce a Collection also qualify.
    • Fortuna classes that wrap a Collection can wrap a Collection, Sequence or generator.
    • Fortuna functions that take a Collection as input will always require a Sequence.
  • Sequence: An ordered Collection.
    • List, tuple or list comprehension.
    • A Sequence is an ordered Collection that can be indexed like a list, without conversion.
    • All Sequences are Collections but not all Collections are Sequences.
  • Pair: Collection of two Values.
  • Table: Collection of Pairs.
  • Matrix: Dictionary of Collections.
  • Inclusive Range.
    • [1, 10] -> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
  • Exclusive Range.
    • (0, 11) -> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
  • Partially Exclusive Range.
    • [1, 11) -> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
    • (0, 10] -> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
  • Automatic Flattening.
    • Works with: RandomValue, TruffleShuffle, QuantumMonty, WeightedChoice & FlexCat.
    • Lazy Evaluation. All Random Value Generator Classes in Fortuna will recursively call or "flatten" callable objects returned from the data at call time, so long as all required parameters are provided.
    • Mixing callable objects with un-callable objects is fully supported, but can become messy.
    • Nested callable objects are fully supported. Because lambda(lambda) -> lambda fixes everything for arbitrary values of 'because', 'fixes' and 'everything'.
    • To disable flattening, pass the optional keyword argument flat=False to the constructor.

Random Value Generators

Fortuna.RandomValue

Fortuna.RandomValue(collection: Collection, flat=True) -> Callable -> Value

  • @param collection :: Collection of Values.
  • @param flat :: Bool. Default: True. Option to automatically flatten callable values with lazy evaluation.
  • @return :: Callable Object. Callable(*args, zero_cool=random_index, range_to=0, **kwargs) -> Value
    • @param zero_cool :: Optional ZeroCool Method, kwarg only. Default = random_index().
    • @param range_to :: Optional Integer in range [-N, N] where N is the length of the Collection.
      • Default = 0, kwarg only. Parameter for ZeroCool Method. range_to=0 indicates the intent to use the whole collection.
      • Negative values of range_to indicate ranging from the back of the Collection.
    • @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
    • @return Value or Value(*args, **kwargs) if Callable.
from Fortuna import RandomValue, front_linear, back_linear

# Data Setup
random_apple = RandomValue(("Delicious", "Empire", "Granny Smith", "Honey Crisp", "Macintosh"))
random_fruit = RandomValue((
    lambda: f"Apple, {random_apple()}",
    "Banana",
    "Cherry",
    "Grapes",
    "Orange",
))

# Usage
print(random_fruit())
# prints a random fruit with the default flat uniform distribution

print(random_fruit(zero_cool=back_linear))
# prints a random fruit with a back_linear distribution

print(random_fruit(range_to=3))
# prints a random fruit of the first 3

print(random_fruit(zero_cool=front_linear, range_to=-3))
# prints a random fruit of the last 3 with a front_linear distribution of that range.

TruffleShuffle

Fortuna.TruffleShuffle(data: Collection, flat=True) -> Callable -> Value

  • @param collection :: Collection of Values. A Set is recommended but not required.
  • @param flat :: Bool. Default: True. Option to automatically flatten callable values with lazy evaluation.
  • @return :: Callable Object. Callable(*args, **kwargs) -> Value
    • @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
    • @return :: Random value from the collection with a Wide Uniform Distribution.

Wide Uniform Distribution: "Wide" refers to the average distance between consecutive occurrences of the same value. The average width of the output distribution will naturally scale up with the size of the collection. The goal of this type of distribution is to keep the output sequence free of clumps or streaks of the same value, while maintaining randomness and uniform probability. This is not the same as a flat uniform distribution. The two distributions over time will be statistically similar for any given set, but the repetitiveness of the output sequence will be very different.

TruffleShuffle, Basic Use

from Fortuna import TruffleShuffle

# Data Setup
list_of_values = { 1, 2, 3, 4, 5, 6 }
truffle_shuffle = TruffleShuffle(list_of_values)

# Usage
print(truffle_shuffle())  # this will print one of the numbers 1-6, 
# over time it will produce a wide distribution.

RandomValue with Auto Flattening Callable Objects

from Fortuna import RandomValue


auto_flat = RandomValue([lambda: 1, lambda: 2, lambda: 3])
print(auto_flat())  # will print the value 1, 2 or 3.
# Note: the lambda will not be called until call time and stays dynamic for the life of the object.

auto_flat_with = RandomValue([lambda x: x, lambda x: x + 1, lambda x:  x + 2])
print(auto_flat_with(2))  # will print the value 2, 3 or 4
# Note: if this is called with no args it will simply return the lambda in an uncalled state.

un_flat = RandomValue([lambda: 1, lambda: 2, lambda: 3], flat=False)
print(un_flat()())  # will print the value 1, 2 or 3, 
# mind the double-double parenthesis, they are required to manually unpack the lambdas

auto_un_flat = RandomValue([lambda x: x, lambda x: x + 1, lambda x:  x + 2], flat=False)
# Note: flat=False is not required here because the lambdas can not be called without input x satisfied.
# It is still recommended to specify flat=False if non-flat output is intend.
print(auto_un_flat()(1))  # will print the value 1, 2 or 3, mind the double-double parenthesis

Mixing Static Objects with Callable Objects

from Fortuna import RandomValue


""" With automatic flattening active, lambda() -> int can be treated as an int. """
mixed_flat = RandomValue([1, 2, lambda: 3])
print(mixed_flat())  # will print 1, 2 or 3

mixed_un_flat = RandomValue([1, 2, lambda: 3], flat=False) # this pattern is not recommended.
print(mixed_flat())  # will print 1, 2 or "Function <lambda at some_address>"
# This pattern is not recommended because you wont know the nature of what you get back.
# This is almost always not what you want, and it can give rise to messy logic in other areas of your code.

Dynamic Strings

To successfully express a dynamic string, and keep it dynamic, at least one level of indirection is required. Without an indirection the f-string would collapse into a static string too soon.

from Fortuna import RandomValue, d


# d() is a simple dice function, d(n) -> [1, n] flat uniform distribution.
dynamic_string = RandomValue((
    # while the probability of all A == all B == all C, individual probabilities of each possible string will differ based on the number of possible outputs of each category.
    lambda: f"A{d(2)}",  # -> A1 - A2, each are twice as likely as any particular B, and three times as likely as any C.
    lambda: f"B{d(4)}",  # -> B1 - B4, each are half as likely as any particular A, and 3/2 as likely as any C.
    lambda: f"C{d(6)}",  # -> C1 - C6, each are 1/3 as likely as any particular A and 2/3 as likely of any B.
))

print(dynamic_string())  # prints a random dynamic string, flattened at call time.

"""
>>> distribution_timer(dynamic_string)
Output Analysis: RandomValue(collection)()
Typical Timing: 875 ± 15 ns
Distribution of 100000 Samples:
 A1: 16.657%
 A2: 16.777%
 B1: 8.408%
 B2: 8.266%
 B3: 8.334%
 B4: 8.203%
 C1: 5.635%
 C2: 5.641%
 C3: 5.468%
 C4: 5.537%
 C5: 5.528%
 C6: 5.546%
 """

Nesting Dolls

from Fortuna import RandomValue

# Data Setup
nesting_dolls = RandomValue({
    RandomValue({"A", "B", "C", "D", "E"}),
    RandomValue({"F", "G", "H", "I", "J"}),
    RandomValue({"K", "L", "M", "N", "O"}),
    RandomValue({"P", "Q", "R", "S", "T"}),
    ...
})

# Usage
print(nesting_dolls())  # prints one of the letters A-T

QuantumMonty

Fortuna.QuantumMonty(data: Collection, flat=True) -> Callable -> Value

  • @param data :: Collection of Values.
  • @param flat :: Bool. Default: True. Option to automatically flatten callable values with lazy evaluation.
  • @return :: Callable Object with Monty Methods for producing various distributions of the data.
    • @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
    • @return :: Random value from the data. The instance will produce random values from the list using the selected distribution model or "monty". The default monty is the Quantum Monty Algorithm.
from Fortuna import QuantumMonty

# Data Setup
list_of_values = [1, 2, 3, 4, 5, 6]
monty = QuantumMonty(list_of_values)

# Usage
print(monty())               # prints a random value from the list_of_values.
                             # uses the default Quantum Monty Algorithm.

print(monty.flat_uniform())  # prints a random value from the list_of_values.
                             # uses the "flat_uniform" monty.
                             # equivalent to random.choice(list_of_values).

The QuantumMonty class represents a diverse collection of strategies for producing random values from a sequence where the output distribution is based on the method you choose. Generally speaking, each value in the sequence will have a probability that is based on its position in the sequence. For example: the "front" monty produces random values where the beginning of the sequence is geometrically more common than the back. Given enough samples the "front" monty will always converge to a 45 degree slope down for any list of unique values.

There are three primary method families: linear, gaussian, and poisson. Each family has three base methods; 'front', 'middle', 'back', plus a 'quantum' method that incorporates all three base methods. The quantum algorithms for each family produce distributions by overlapping the probability waves of the other methods in their family. The Quantum Monty Algorithm incorporates all nine base methods.

import Fortuna

# Data Setup
monty = Fortuna.QuantumMonty(
    ["Alpha", "Beta", "Delta", "Eta", "Gamma", "Kappa", "Zeta"]
)

# Usage
# Each of the following methods will return a random value from the sequence.
# Each method has its own unique distribution model.
""" Flat Base Case """
monty.flat_uniform()        # Flat Uniform Distribution
""" Geometric Positional """
monty.front_linear()        # Linear Descending, Triangle
monty.middle_linear()       # Linear Median Peak, Equilateral Triangle
monty.back_linear()         # Linear Ascending, Triangle
monty.quantum_linear()      # Linear Overlay, 3-way monty.
""" Gaussian Positional """
monty.front_gauss()         # Front Gamma
monty.middle_gauss()        # Scaled Gaussian
monty.back_gauss()          # Reversed Gamma
monty.quantum_gauss()       # Gaussian Overlay, 3-way monty.
""" Poisson Positional """
monty.front_poisson()       # 1/4 Mean Poisson
monty.middle_poisson()      # 1/2 Mean Poisson
monty.back_poisson()        # 3/4 Mean Poisson
monty.quantum_poisson()     # Poisson Overlay, 3-way monty.
""" Quantum Monty Algorithm """
monty()                     # Quantum Monty Algorithm, 9-way monty.
monty.quantum_monty()       #  same as above

Weighted Choice: Base Class

Weighted Choice offers two strategies for selecting random values from a sequence where programmable rarity is desired. Both produce a custom distribution of values based on the weights of the values.

The choice to use one strategy over the other is purely about which one suits you or your data best. Relative weights are easier to understand at a glance. However, many RPG Treasure Tables map rather nicely to a cumulative weighted strategy.

Cumulative Weighted Choice

Fortuna.CumulativeWeightedChoice(weighted_table: Table, flat=True) -> Callable -> Value

  • @param weighted_table :: Table of weighted pairs.
  • @param flat :: Bool. Default: True. Option to automatically flatten callable values with lazy evaluation.
  • @return :: Callable Instance
    • @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
    • @return :: Random value from the weighted_table, distribution based on the weights of the values.

Note: Logic dictates Cumulative Weights must be unique!

from Fortuna import CumulativeWeightedChoice

# Data Setup
cum_weighted_choice = CumulativeWeightedChoice((
    (7, "Apple"),
    (11, "Banana"),
    (13, "Cherry"),
    (23, "Grape"),
    (26, "Lime"),
    (30, "Orange"),  # same as relative weight 4 because 30 - 26 = 4
))
# Usage
print(cum_weighted_choice())  # prints a weighted random value

Relative Weighted Choice

Fortuna.RelativeWeightedChoice(weighted_table: Table) -> Callable -> Value

  • @param weighted_table :: Table of weighted pairs.
  • @param flat :: Bool. Default: True. Option to automatically flatten callable values with lazy evaluation.
  • @return :: Callable Instance
    • @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
    • @return :: Random value from the weighted_table, distribution based on the weights of the values.
from Fortuna import RelativeWeightedChoice

# Data
population = ["Apple", "Banana", "Cherry", "Grape", "Lime", "Orange"]
rel_weights = [7, 4, 2, 10, 3, 4]

# Setup
rel_weighted_choice = RelativeWeightedChoice(zip(rel_weights, population))

# Usage
print(rel_weighted_choice())  # prints a weighted random value

FlexCat

Fortuna.FlexCat(matrix_data: Matrix, key_bias="front_linear", val_bias="truffle_shuffle", flat=True) -> Callable -> Value

  • @param matrix_data :: Dictionary of Value Sequences.
  • @parm key_bias :: Default is "front_linear". String indicating the name of the algorithm to use for random key selection.
  • @parm val_bias :: Default is "truffle_shuffle". String indicating the name of the algorithm to use for random value selection.
  • @param flat :: Bool. Default is True. Option to automatically flatten callable values with lazy evaluation.
  • @return :: Callable Instance
    • @param cat_key :: Optional String. Default is None. Key selection by name. If specified, this will override the key_bias for a single call.
    • @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
    • @return :: Value. Returns a random value generated with val_bias from a random sequence generated with key_bias.

FlexCat is a lot like a multi dimensional QuantumMonty, or a QuantumMonty of QuantumMontys.

The constructor takes two optional keyword arguments to specify the algorithms to be used to make random selections. The algorithm specified for selecting a key need not be the same as the one for selecting values. An optional key may be provided at call time to bypass the random key selection. Keys passed in this way must exactly match a key in the Matrix.

By default, FlexCat will use key_bias="front_linear" and val_bias="truffle_shuffle", this will make the top of the data structure geometrically more common than the bottom and it will truffle shuffle the sequence values. This config is known as TopCat, it produces a descending-step, micro-shuffled distribution sequence. Many other combinations are available.

Algorithmic Options: See QuantumMonty & TruffleShuffle for more details.

  • "front_linear", Linear Descending
  • "middle_linear", Linear Median Peak
  • "back_linear", Linear Ascending
  • "quantum_linear", Linear 3-way monty
  • "front_gauss", Gamma Descending
  • "middle_gauss", Scaled Gaussian
  • "back_gauss", Gamma Ascending
  • "quantum_gauss", Gaussian 3-way monty
  • "front_poisson", Front 1/3 Mean Poisson
  • "middle_poisson", Middle Mean Poisson
  • "back_poisson", Back 1/3 Mean Poisson
  • "quantum_poisson", Poisson 3-way monty
  • "quantum_monty", Quantum Monty Algorithm, 9-way monty
  • "flat_uniform", uniform flat distribution
  • "truffle_shuffle", TruffleShuffle, wide uniform distribution
from Fortuna import FlexCat, d


#                           |- Collection Generator, does not require lambda.
# Data                      |
matrix_data = {#            $                         |- Dynamic Value Expression
    "Cat_A": (f"A{i}" for i in range(1, 6)),  #       |  Lazy, 1 of 4
    "Cat_B": ("B1", "B2", "B3", "B4", "B5"),  #       $
    "Cat_C": ("C1", "C2", "C3", f"C4.{d(2)}", lambda: f"C5.{d(4)}"),
}#   $       $       $              $                        $
#    |       |       |- Value       |                        |- Fair die method
#    |       |                      |
#    |       |- Collection          |- Static Value Expression
#    |                              |  Eager, 1 or 2 permanently
#    |- Collection Key, "cat_key"

#                               |- Collection Algorithm     |- Value Algorithm
# Setup                         $  y-axis                   $  x-axis
flex_cat = FlexCat(matrix_data, key_bias="front_linear", val_bias="flat_uniform")
#    $       $       $
#    |       |       |- Dictionary of Collections
#    |       |
#    |       |- FlexCat Constructor
#    |       
#    |- Callable Random Value Generator

# Usage
flex_cat()  # returns a Value from the Matrix.
flex_cat(cat_key="Cat_B")  # returns a Value specifically from the "Cat_B" Collection.

Random Integer Generators

Fortuna.random_below(number: int) -> int

  • @param number :: Any Integer
  • @return :: Returns a random integer in the range...
    • random_below(number) -> [0, number) for positive values.
    • random_below(number) -> (number, 0] for negative values.
    • random_below(0) -> 0 Always returns zero when input is zero
  • Flat uniform distribution.

Fortuna.random_int(left_limit: int, right_limit: int) -> int

  • @param left_limit :: Any Integer
  • @param right_limit :: Any Integer
  • @return :: Returns a random integer in the range [left_limit, right_limit]
    • random_int(1, 10) -> [1, 10]
    • random_int(10, 1) -> [1, 10] same as above.
    • random_int(A, B) Always returns A when A == B
  • Flat uniform distribution.

Fortuna.random_range(start: int, stop: int = 0, step: int = 1) -> int

  • @param start :: Required starting point.
    • random_range(0) -> [0]
    • random_range(10) -> [0, 10) from 0 to 9. Same as Fortuna.random_index(N)
    • random_range(-10) -> [-10, 0) from -10 to -1. Same as Fortuna.random_index(-N)
  • @param stop :: Zero by default. Optional range bound. With at least two arguments, the order of the first two does not matter.
    • random_range(0, 0) -> [0]
    • random_range(0, 10) -> [0, 10) from 0 to 9.
    • random_range(10, 0) -> [0, 10) same as above.
  • @param step :: One by default. Optional step size.
    • random_range(0, 0, 0) -> [0]
    • random_range(0, 10, 2) -> [0, 10) by 2 even numbers from 0 to 8.
    • The sign of the step parameter controls the phase of the output. Negative stepping will flip the inclusively.
    • random_range(0, 10, -1) -> (0, 10] starts at 10 and ranges down to 1.
    • random_range(10, 0, -1) -> (0, 10] same as above.
    • random_range(10, 10, 0) -> [10] a step size or range size of zero always returns the first parameter.
  • @return :: Returns a random integer in the range [A, B) by increments of C.
  • Flat uniform distribution.

Fortuna.d(sides: int) -> int

  • Represents a single roll of a given size die.
  • @param sides :: Any Integer. Represents the size or number of sides, most commonly six.
  • @return :: Returns a random integer in the range [1, sides].
  • Flat uniform distribution.

Fortuna.dice(rolls: int, sides: int) -> int

  • Represents the sum of multiple rolls of the same size die.
  • @param rolls :: Any Integer. Represents the number of times to roll the die.
  • @param sides :: Any Integer. Represents the die size or number of sides, most commonly six.
  • @return :: Returns a random integer in range [X, Y] where X = rolls and Y = rolls * sides.
  • Geometric distribution based on the number and size of the dice rolled.
  • Complexity scales primarily with the number of rolls, not the size of the dice.

Fortuna.plus_or_minus(number: int) -> int

  • @param number :: Any Integer.
  • @return :: Returns a random integer in range [-number, number].
  • Flat uniform distribution.

Fortuna.plus_or_minus_linear(number: int) -> int

  • @param number :: Any Integer.
  • @return :: Returns a random integer in range [-number, number].
  • Linear geometric, 45 degree triangle distribution centered on zero.

Fortuna.plus_or_minus_gauss(number: int) -> int

  • @param number :: Any Integer.
  • @return :: Returns a random integer in range [-number, number].
  • Stretched gaussian distribution centered on zero.

Random Index, ZeroCool Specification

ZeroCool Methods are used to generate random Sequence indices.

ZeroCool methods must have the following properties:

  • Any distribution model is acceptable.
  • The method or function must take exactly one Integer parameter N.
  • The method returns a random int in range [0, N) for positive values of N.
  • The method returns a random int in range [N, 0) for negative values of N.
  • This symmetry matches how python can index a list from the back for negative values or the front for positive values.
from Fortuna import random_index


some_list = [i for i in range(100)]

print(some_list[random_index(10)])  # prints one of the first 10 items of some_list, [0, 9]
print(some_list[random_index(-10)])  # prints one of the last 10 items of some_list, [90, 99]

ZeroCool Methods

  • Fortuna.random_index(size: int) -> int Flat uniform distribution
  • Fortuna.front_gauss(size: int) -> int Gamma Distribution: Front Peak
  • Fortuna.middle_gauss(size: int) -> int Stretched Gaussian Distribution: Median Peak
  • Fortuna.back_gauss(size: int) -> int Gamma Distribution: Back Peak
  • Fortuna.quantum_gauss(size: int) -> int Quantum Gaussian: Three-way Monty
  • Fortuna.front_poisson(size: int) -> int Poisson Distribution: Front 1/3 Peak
  • Fortuna.middle_poisson(size: int) -> int Poisson Distribution: Middle Peak
  • Fortuna.back_poisson(size: int) -> int Poisson Distribution: Back 1/3 Peak
  • Fortuna.quantum_poisson(size: int) -> int Quantum Poisson: Three-way Monty
  • Fortuna.front_geometric(size: int) -> int Linear Geometric: 45 Degree Front Peak
  • Fortuna.middle_geometric(size: int) -> int Linear Geometric: 45 Degree Middle Peak
  • Fortuna.back_geometric(size: int) -> int Linear Geometric: 45 Degree Back Peak
  • Fortuna.quantum_geometric(size: int) -> int Quantum Geometric: Three-way Monty
  • Fortuna.quantum_monty(size: int) -> int Quantum Monty: Nine-way Monty
from Fortuna import front_gauss, middle_gauss, back_gauss, quantum_gauss


some_list = [i for i in range(100)]

# Each of the following prints one of the first 10 items of some_list with the appropriate distribution
print(some_list[front_gauss(10)])
print(some_list[middle_gauss(10)])
print(some_list[back_gauss(10)])
print(some_list[quantum_gauss(10)])

# Each of the following prints one of the last 10 items of some_list with the appropriate distribution
print(some_list[front_gauss(-10)])  
print(some_list[middle_gauss(-10)])  
print(some_list[back_gauss(-10)])  
print(some_list[quantum_gauss(-10)])

Random Float Generators

Fortuna.canonical() -> float

  • @return :: random float in range [0.0, 1.0), flat uniform.
  • Inclusiveness can vary across platforms.

Fortuna.random_float(a: Float, b: Float) -> Float

  • @param a :: Float
  • @param b :: Float
  • @return :: random Float in range [a, b), flat uniform distribution.
  • Inclusiveness can vary across platforms.

Fortuna.triangular(low Float, high Float, mode Float) -> Float

  • @param low :: Float, minimum output
  • @param high :: Float, maximum output
  • @param mode :: Float, most common output, mode must be in range [low, high]
  • @return :: random number in range [low, high] with a linear distribution about the mode.

Random Truth Generator

Fortuna.percent_true(truth_factor: Float = 50.0) -> bool

  • @param truth_factor :: The probability of True as a percentage. Default is 50 percent.
  • @return :: Produces True or False based on the truth_factor.
    • Always returns False if num is 0 or less
    • Always returns True if num is 100 or more.

Shuffle Algorithms

Fortuna.shuffle(array: list) -> None

  • Knuth B shuffle algorithm. Destructive, in-place shuffle.
  • @param array :: Must be a mutable list-like object.

Utilities

Fortuna.flatten(maybe_callable, *args, flat=True, **kwargs) -> flatten(maybe_callable(*args, **kwargs))

  • Recursively calls the input object and returns the result. The arguments are only passed in on the first evaluation.
  • If the maybe_callable is not callable it is simply returned without error.
  • Essentially this is the opposite of bind, and it's recursive.
  • Conceptually this is somewhat like collapsing the wave function. Often used as the last step in lazy evaluation.
  • @param maybe_callable :: Any Object that might be callable.
  • @param flat :: Boolean, default is True. Optional, keyword only.
    • Disables flattening if flat is set to False, conceptually turns flatten into the identity function.
  • @param *args, **kwargs :: Optional arguments used to flatten the maybe_callable object.
  • @return :: Recursively Flattened Object.

Fortuna.smart_clamp(target: int, lo: int, hi: int) -> int

  • Used to clamp the target in range [lo, hi] by saturating the bounds.
  • Essentially the same as median for exactly three integers.
  • @return :: Returns the middle value, input order does not matter.

Fortuna Development Log

Fortuna 3.9.4
  • Documentation update.
Fortuna 3.9.3
  • MonkeyScope update, 10% test suite performance improvement.
Fortuna 3.9.2
  • Documentation update.
Fortuna 3.9.1
  • flatten_with has been renamed to flatten. This should be non-breaking, please report any bugs.
  • MonkeyScope will automatically be installed with Fortuna if needed. This is a light-weight test framework for non-deterministic methods.
Fortuna 3.9.0, internal
  • Added many doc strings.
  • Corrected many typos in Docs.
  • The flatten function has been fully replaced by flatten_with.
    • All classes that supports automatic flattening can now accept arbitrary arguments at call time.
    • flatten_with will be renamed to flatten in a future release.
Fortuna 3.8.9
  • Fixed some typos.
Fortuna 3.8.8
  • Fortuna now supports Python notebooks, python3.6 or higher required.
Fortuna 3.8.7
  • Storm Update
Fortuna 3.8.6
  • Attempting to make Fortuna compatible with Python Notebooks.
Fortuna 3.8.5
  • Installer Config Update
Fortuna 3.8.4
  • Installer Config Update
Fortuna 3.8.3
  • Storm Update 3.2.0
Fortuna 3.8.2
  • More Typo Fix
Fortuna 3.8.1
  • Typo Fix
Fortuna 3.8.0
  • Major API Update, several utilities have been deprecated. See MonkeyScope for replacements.
    • distribution
    • distribution_timer
    • timer
Fortuna 3.7.7
  • Documentation Update
Fortuna 3.7.6
  • Install script update.
Fortuna 3.7.5 - internal
  • Storm 3.1.1 Update
  • Added triangular function.
Fortuna 3.7.4
  • Fixed: missing header in the project manifest, this may have caused building from source to fail.
Fortuna 3.7.3
  • Storm Update
Fortuna 3.7.2
  • Storm Update
Fortuna 3.7.1
  • Bug fixes
Fortuna 3.7.0 - internal
  • flatten_with() is now the default flattening algorithm for all Fortuna classes.
Fortuna 3.6.5
  • Documentation Update
  • RandomValue: New flatten-with-arguments functionality.
Fortuna 3.6.4
  • RandomValue added for testing
Fortuna 3.6.3
  • Developer Update
Fortuna 3.6.2
  • Installer Script Update
Fortuna 3.6.1
  • Documentation Update
Fortuna 3.6.0
  • Storm Update
  • Test Update
  • Bug fix for random_range(), negative stepping is now working as intended. This bug was introduced in 3.5.0.
  • Removed Features
    • lazy_cat(): use QuantumMonty class instead.
    • flex_cat(): use FlexCat class instead.
    • truffle_shuffle(): use TruffleShuffle class instead.
Fortuna 3.5.3 - internal
  • Features added for testing & development
    • ActiveChoice class
    • random_rotate() function
Fortuna 3.5.2
  • Documentation Updates
Fortuna 3.5.1
  • Test Update
Fortuna 3.5.0
  • Storm Update
  • Minor Bug Fix: Truffle Shuffle
  • Deprecated Features
    • lazy_cat(): use QuantumMonty class instead.
    • flex_cat(): use FlexCat class instead.
    • truffle_shuffle(): use TruffleShuffle class instead.
Fortuna 3.4.9
  • Test Update
Fortuna 3.4.8
  • Storm Update
Fortuna 3.4.7
  • Bug fix for analytic_continuation.
Fortuna 3.4.6
  • Docs Update
Fortuna 3.4.5
  • Docs Update
  • Range Tests Added, see extras folder.
Fortuna 3.4.4
  • ZeroCool Algorithm Bug Fixes
  • Typos Fixed
Fortuna 3.4.3
  • Docs Update
Fortuna 3.4.2
  • Typos Fixed
Fortuna 3.4.1
  • Major Bug Fix: random_index()
Fortuna 3.4.0 - internal
  • ZeroCool Poisson Algorithm Family Updated
Fortuna 3.3.8 - internal
  • Docs Update
Fortuna 3.3.7
  • Fixed Performance Bug: ZeroCool Linear Algorithm Family
Fortuna 3.3.6
  • Docs Update
Fortuna 3.3.5
  • ABI Updates
  • Bug Fixes
Fortuna 3.3.4
  • Examples Update
Fortuna 3.3.3
  • Test Suite Update
Fortuna 3.3.2 - internal
  • Documentation Update
Fortuna 3.3.1 - internal
  • Minor Bug Fix
Fortuna 3.3.0 - internal
  • Added plus_or_minus_gauss(N: int) -> int random int in range [-N, N] Stretched Gaussian Distribution
Fortuna 3.2.3
  • Small Typos Fixed
Fortuna 3.2.2
  • Documentation update.
Fortuna 3.2.1
  • Small Typo Fixed
Fortuna 3.2.0
  • API updates:
    • QunatumMonty.uniform -> QunatumMonty.flat_uniform
    • QunatumMonty.front -> QunatumMonty.front_linear
    • QunatumMonty.middle -> QunatumMonty.middle_linear
    • QunatumMonty.back -> QunatumMonty.back_linear
    • QunatumMonty.quantum -> QunatumMonty.quantum_linear
    • randindex -> random_index
    • randbelow -> random_below
    • randrange -> random_range
    • randint -> random_int
Fortuna 3.1.0
  • discrete() has been removed, see Weighted Choice.
  • lazy_cat() added.
  • All ZeroCool methods have been raised to top level API, for use with lazy_cat()
Fortuna 3.0.1
  • minor typos.
Fortuna 3.0.0
  • Storm 2 Rebuild.
Fortuna 2.1.1
  • Small bug fixes.
  • Test updates.
Fortuna 2.1.0, Major Feature Update
  • Fortuna now includes the best of RNG and Pyewacket.
Fortuna 2.0.3
  • Bug fix.
Fortuna 2.0.2
  • Clarified some documentation.
Fortuna 2.0.1
  • Fixed some typos.
Fortuna 2.0.0b1-10
  • Total rebuild. New RNG Storm Engine.
Fortuna 1.26.7.1
  • README updated.
Fortuna 1.26.7
  • Small bug fix.
Fortuna 1.26.6
  • Updated README to reflect recent changes to the test script.
Fortuna 1.26.5
  • Fixed small bug in test script.
Fortuna 1.26.4
  • Updated documentation for clarity.
  • Fixed a minor typo in the test script.
Fortuna 1.26.3
  • Clean build.
Fortuna 1.26.2
  • Fixed some minor typos.
Fortuna 1.26.1
  • Release.
Fortuna 1.26.0 beta 2
  • Moved README and LICENSE files into fortuna_extras folder.
Fortuna 1.26.0 beta 1
  • Dynamic version scheme implemented.
  • The Fortuna Extension now requires the fortuna_extras package, previously it was optional.
Fortuna 1.25.4
  • Fixed some minor typos in the test script.
Fortuna 1.25.3
  • Since version 1.24 Fortuna requires Python 3.7 or higher. This patch corrects an issue where the setup script incorrectly reported requiring Python 3.6 or higher.
Fortuna 1.25.2
  • Updated test suite.
  • Major performance update for TruffleShuffle.
  • Minor performance update for QuantumMonty & FlexCat: cycle monty.
Fortuna 1.25.1
  • Important bug fix for TruffleShuffle, QuantumMonty and FlexCat.
Fortuna 1.25
  • Full 64bit support.
  • The Distribution & Performance Tests have been redesigned.
  • Bloat Control: Two experimental features have been removed.
    • RandomWalk
    • CatWalk
  • Bloat Control: Several utility functions have been removed from the top level API. These function remain in the Fortuna namespace for now, but may change in the future without warning.
    • stretch_bell, internal only.
    • min_max, not used anymore.
    • analytic_continuation, internal only.
    • flatten, internal only.
Fortuna 1.24.3
  • Low level refactoring, non-breaking patch.
Fortuna 1.24.2
  • Setup config updated to improve installation.
Fortuna 1.24.1
  • Low level patch to avoid potential ADL issue. All low level function calls are now qualified.
Fortuna 1.24
  • Documentation updated for even more clarity.
  • Bloat Control: Two naïve utility functions that are no longer used in the module have been removed.
    • n_samples -> use a list comprehension instead. [f(x) for _ in range(n)]
    • bind -> use a lambda instead. lambda: f(x)
Fortuna 1.23.7
  • Documentation updated for clarity.
  • Minor bug fixes.
  • TruffleShuffle has been redesigned slightly, it now uses a random rotate instead of swap.
  • Custom __repr__ methods have been added to each class.
Fortuna 1.23.6
  • New method for QuantumMonty: quantum_not_monty - produces the upside down quantum_monty.
  • New bias option for FlexCat: not_monty.
Fortuna 1.23.5.1
  • Fixed some small typos.
Fortuna 1.23.5
  • Documentation updated for clarity.
  • All sequence wrappers can now accept generators as input.
  • Six new functions added:
    • random_float() -> float in range [0.0..1.0) exclusive, uniform flat distribution.
    • percent_true_float(num: float) -> bool, Like percent_true but with floating point precision.
    • plus_or_minus_linear_down(num: int) -> int in range [-num..num], upside down pyramid.
    • plus_or_minus_curve_down(num: int) -> int in range [-num..num], upside down bell curve.
    • mostly_not_middle(num: int) -> int in range [0..num], upside down pyramid.
    • mostly_not_center(num: int) -> int in range [0..num], upside down bell curve.
  • Two new methods for QuantumMonty:
    • mostly_not_middle
    • mostly_not_center
  • Two new bias options for FlexCat, either can be used to define x and/or y axis bias:
    • not_middle
    • not_center
Fortuna 1.23.4.2
  • Fixed some minor typos in the README.md file.
Fortuna 1.23.4.1
  • Fixed some minor typos in the test suite.
Fortuna 1.23.4
  • Fortuna is now Production/Stable!
  • Fortuna and Fortuna Pure now use the same test suite.
Fortuna 0.23.4, first release candidate.
  • RandomCycle, BlockCycle and TruffleShuffle have been refactored and combined into one class: TruffleShuffle.
  • QuantumMonty and FlexCat will now use the new TruffleShuffle for cycling.
  • Minor refactoring across the module.
Fortuna 0.23.3, internal
  • Function shuffle(arr: list) added.
Fortuna 0.23.2, internal
  • Simplified the plus_or_minus_curve(num: int) function, output will now always be bounded to the range [-num..num].
  • Function stretched_bell(num: int) added, this matches the previous behavior of an unbounded plus_or_minus_curve.
Fortuna 0.23.1, internal
  • Small bug fixes and general clean up.
Fortuna 0.23.0
  • The number of test cycles in the test suite has been reduced to 10,000 (down from 100,000). The performance of the pure python implementation and the c-extension are now directly comparable.
  • Minor tweaks made to the examples in .../fortuna_extras/fortuna_examples.py
Fortuna 0.22.2, experimental features
  • BlockCycle class added.
  • RandomWalk class added.
  • CatWalk class added.
Fortuna 0.22.1
  • Fortuna classes no longer return lists of values, this behavior has been extracted to a free function called n_samples.
Fortuna 0.22.0, experimental features
  • Function bind added.
  • Function n_samples added.
Fortuna 0.21.3
  • Flatten will no longer raise an error if passed a callable item that it can't call. It correctly returns such items in an uncalled state without error.
  • Simplified .../fortuna_extras/fortuna_examples.py - removed unnecessary class structure.
Fortuna 0.21.2
  • Fix some minor bugs.
Fortuna 0.21.1
  • Fixed a bug in .../fortuna_extras/fortuna_examples.py
Fortuna 0.21.0
  • Function flatten added.
  • Flatten: The Fortuna classes will recursively unpack callable objects in the data set.
Fortuna 0.20.10
  • Documentation updated.
Fortuna 0.20.9
  • Minor bug fixes.
Fortuna 0.20.8, internal
  • Testing cycle for potential new features.
Fortuna 0.20.7
  • Documentation updated for clarity.
Fortuna 0.20.6
  • Tests updated based on recent changes.
Fortuna 0.20.5, internal
  • Documentation updated based on recent changes.
Fortuna 0.20.4, internal
  • WeightedChoice (both types) can optionally return a list of samples rather than just one value, control the length of the list via the n_samples argument.
Fortuna 0.20.3, internal
  • RandomCycle can optionally return a list of samples rather than just one value, control the length of the list via the n_samples argument.
Fortuna 0.20.2, internal
  • QuantumMonty can optionally return a list of samples rather than just one value, control the length of the list via the n_samples argument.
Fortuna 0.20.1, internal
  • FlexCat can optionally return a list of samples rather than just one value, control the length of the list via the n_samples argument.
Fortuna 0.20.0, internal
  • FlexCat now accepts a standard dict as input. The ordered(ness) of dict is now part of the standard in Python 3.7.1. Previously FlexCat required an OrderedDict, now it accepts either and treats them the same.
Fortuna 0.19.7
  • Fixed bug in .../fortuna_extras/fortuna_examples.py.
Fortuna 0.19.6
  • Updated documentation formatting.
  • Small performance tweak for QuantumMonty and FlexCat.
Fortuna 0.19.5
  • Minor documentation update.
Fortuna 0.19.4
  • Minor update to all classes for better debugging.
Fortuna 0.19.3
  • Updated plus_or_minus_curve to allow unbounded output.
Fortuna 0.19.2
  • Internal development cycle.
  • Minor update to FlexCat for better debugging.
Fortuna 0.19.1
  • Internal development cycle.
Fortuna 0.19.0
  • Updated documentation for clarity.
  • MultiCat has been removed, it is replaced by FlexCat.
  • Mostly has been removed, it is replaced by QuantumMonty.
Fortuna 0.18.7
  • Fixed some more README typos.
Fortuna 0.18.6
  • Fixed some README typos.
Fortuna 0.18.5
  • Updated documentation.
  • Fixed another minor test bug.
Fortuna 0.18.4
  • Updated documentation to reflect recent changes.
  • Fixed some small test bugs.
  • Reduced default number of test cycles to 10,000 - down from 100,000.
Fortuna 0.18.3
  • Fixed some minor README typos.
Fortuna 0.18.2
  • Fixed a bug with Fortuna Pure.
Fortuna 0.18.1
  • Fixed some minor typos.
  • Added tests for .../fortuna_extras/fortuna_pure.py
Fortuna 0.18.0
  • Introduced new test format, now includes average call time in nanoseconds.
  • Reduced default number of test cycles to 100,000 - down from 1,000,000.
  • Added pure Python implementation of Fortuna: .../fortuna_extras/fortuna_pure.py
  • Promoted several low level functions to top level.
    • zero_flat(num: int) -> int
    • zero_cool(num: int) -> int
    • zero_extreme(num: int) -> int
    • max_cool(num: int) -> int
    • max_extreme(num: int) -> int
    • analytic_continuation(func: staticmethod, num: int) -> int
    • min_max(num: int, lo: int, hi: int) -> int
Fortuna 0.17.3
  • Internal development cycle.
Fortuna 0.17.2
  • User Requested: dice() and d() functions now support negative numbers as input.
Fortuna 0.17.1
  • Fixed some minor typos.
Fortuna 0.17.0
  • Added QuantumMonty to replace Mostly, same default behavior with more options.
  • Mostly is depreciated and may be removed in a future release.
  • Added FlexCat to replace MultiCat, same default behavior with more options.
  • MultiCat is depreciated and may be removed in a future release.
  • Expanded the Treasure Table example in .../fortuna_extras/fortuna_examples.py
Fortuna 0.16.2
  • Minor refactoring for WeightedChoice.
Fortuna 0.16.1
  • Redesigned fortuna_examples.py to feature a dynamic random magic item generator.
  • Raised cumulative_weighted_choice function to top level.
  • Added test for cumulative_weighted_choice as free function.
  • Updated MultiCat documentation for clarity.
Fortuna 0.16.0
  • Pushed distribution_timer to the .pyx layer.
  • Changed default number of iterations of tests to 1 million, up form 1 hundred thousand.
  • Reordered tests to better match documentation.
  • Added Base Case Fortuna.fast_rand_below.
  • Added Base Case Fortuna.fast_d.
  • Added Base Case Fortuna.fast_dice.
Fortuna 0.15.10
  • Internal Development Cycle
Fortuna 0.15.9
  • Added Base Cases for random_value()
  • Added Base Case for randint()
Fortuna 0.15.8
  • Clarified MultiCat Test
Fortuna 0.15.7
  • Fixed minor typos.
Fortuna 0.15.6
  • Fixed minor typos.
  • Simplified MultiCat example.
Fortuna 0.15.5
  • Added MultiCat test.
  • Fixed some minor typos in docs.
Fortuna 0.15.4
  • Performance optimization for both WeightedChoice() variants.
  • Cython update provides small performance enhancement across the board.
  • Compilation now leverages Python3 all the way down.
  • MultiCat pushed to the .pyx layer for better performance.
Fortuna 0.15.3
  • Reworked the MultiCat example to include several randomizing strategies working in concert.
  • Added Multi Dice 10d10 performance tests.
  • Updated sudo code in documentation to be more pythonic.
Fortuna 0.15.2
  • Fixed: Linux installation failure.
  • Added: complete source files to the distribution (.cpp .hpp .pyx).
Fortuna 0.15.1
  • Updated & simplified distribution_timer in fortuna_tests.py
  • Readme updated, fixed some typos.
  • Known issue preventing successful installation on some linux platforms.
Fortuna 0.15.0
  • Performance tweaks.
  • Readme updated, added some details.
Fortuna 0.14.1
  • Readme updated, fixed some typos.
Fortuna 0.14.0
  • Fixed a bug where the analytic continuation algorithm caused a rare issue during compilation on some platforms.
Fortuna 0.13.3
  • Fixed Test Bug: percent sign was missing in output distributions.
  • Readme updated: added update history, fixed some typos.
Fortuna 0.13.2
  • Readme updated for even more clarity.
Fortuna 0.13.1
  • Readme updated for clarity.
Fortuna 0.13.0
  • Minor Bug Fixes.
  • Readme updated for aesthetics.
  • Added Tests: .../fortuna_extras/fortuna_tests.py
Fortuna 0.12.0
  • Internal test for future update.
Fortuna 0.11.0
  • Initial Release: Public Beta
Fortuna 0.10.0
  • Module name changed from Dice to Fortuna
Dice 0.1.x - 0.9.x
  • Experimental Phase

Distribution and Performance Tests

MonkeyScope: Fortuna Quick Test

Random Sequence Values:

some_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Base Case
Output Analysis: Random.choice(some_list)
Typical Timing: 789 ± 32 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 5
 Maximum: 9
 Mean: 4.542
 Std Deviation: 2.863605419746233
Distribution of 100000 samples:
 0: 10.036%
 1: 10.037%
 2: 9.898%
 3: 9.979%
 4: 9.998%
 5: 10.027%
 6: 10.14%
 7: 9.814%
 8: 10.123%
 9: 9.948%

Output Analysis: random_value(some_list)
Typical Timing: 68 ± 7 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 5
 Maximum: 9
 Mean: 4.555
 Std Deviation: 2.8630359760226556
Distribution of 100000 samples:
 0: 9.949%
 1: 10.07%
 2: 10.04%
 3: 10.122%
 4: 10.019%
 5: 10.182%
 6: 10.019%
 7: 9.804%
 8: 9.986%
 9: 9.809%

Output Analysis: TruffleShuffle(collection)()
Typical Timing: 490 ± 26 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 4
 Maximum: 9
 Mean: 4.482
 Std Deviation: 2.870483582952531
Distribution of 100000 samples:
 0: 10.009%
 1: 10.022%
 2: 10.045%
 3: 9.94%
 4: 9.888%
 5: 10.152%
 6: 9.914%
 7: 10.025%
 8: 9.941%
 9: 10.064%

Output Analysis: QuantumMonty(collection)()
Typical Timing: 556 ± 40 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 4
 Maximum: 9
 Mean: 4.466
 Std Deviation: 2.892895435372665
Distribution of 100000 samples:
 0: 10.818%
 1: 9.004%
 2: 8.873%
 3: 9.587%
 4: 11.492%
 5: 11.474%
 6: 9.788%
 7: 9.164%
 8: 9.004%
 9: 10.796%

Output Analysis: RandomValue(collection)()
Typical Timing: 409 ± 8 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 5
 Maximum: 9
 Mean: 4.544
 Std Deviation: 2.9206273298728136
Distribution of 100000 samples:
 0: 9.821%
 1: 9.971%
 2: 9.988%
 3: 10.237%
 4: 10.192%
 5: 9.84%
 6: 10.036%
 7: 10.02%
 8: 10.071%
 9: 9.824%


Weighted Tables:

population = ('A', 'B', 'C', 'D')
cum_weights = (1, 3, 6, 10)
rel_weights = (1, 2, 3, 4)
cum_weighted_table = zip(cum_weights, population)
rel_weighted_table = zip(rel_weights, population)

Cumulative Base Case
Output Analysis: Random.choices(population, cum_weights=cum_weights)
Typical Timing: 1714 ± 73 ns
Distribution of 100000 samples:
 A: 9.876%
 B: 19.937%
 C: 30.079%
 D: 40.108%

Output Analysis: CumulativeWeightedChoice(weighted_table)()
Typical Timing: 420 ± 15 ns
Distribution of 100000 samples:
 A: 9.993%
 B: 20.069%
 C: 29.714%
 D: 40.224%

Output Analysis: cumulative_weighted_choice(tuple(zip(cum_weights, population)))
Typical Timing: 133 ± 2 ns
Distribution of 100000 samples:
 A: 9.993%
 B: 19.941%
 C: 30.257%
 D: 39.809%

Relative Base Case
Output Analysis: Random.choices(population, weights=rel_weights)
Typical Timing: 2173 ± 69 ns
Distribution of 100000 samples:
 A: 10.137%
 B: 20.158%
 C: 29.771%
 D: 39.934%

Output Analysis: RelativeWeightedChoice(weighted_table)()
Typical Timing: 403 ± 17 ns
Distribution of 100000 samples:
 A: 9.849%
 B: 20.126%
 C: 29.987%
 D: 40.038%


Random Matrix Values:

some_matrix = {'A': (1, 2, 3, 4), 'B': (10, 20, 30, 40), 'C': (100, 200, 300, 400)}

Output Analysis: FlexCat(matrix_data, key_bias, val_bias, flat)()
Typical Timing: 807 ± 18 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 30
 Maximum: 400
 Mean: 93.856
 Std Deviation: 128.89008985953885
Distribution of 100000 samples:
 1: 8.374%
 2: 8.34%
 3: 8.226%
 4: 8.209%
 10: 8.398%
 20: 8.424%
 30: 8.286%
 40: 8.346%
 100: 8.453%
 200: 8.283%
 300: 8.218%
 400: 8.443%


Random Integers:

Base Case
Output Analysis: Random.randrange(10)
Typical Timing: 881 ± 73 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 5
 Maximum: 9
 Mean: 4.523
 Std Deviation: 2.843496263405317
Distribution of 100000 samples:
 0: 10.148%
 1: 9.993%
 2: 10.081%
 3: 10.011%
 4: 9.879%
 5: 9.977%
 6: 9.984%
 7: 10.046%
 8: 10.073%
 9: 9.808%

Output Analysis: random_below(10)
Typical Timing: 66 ± 5 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 4
 Maximum: 9
 Mean: 4.298
 Std Deviation: 2.8683089094447274
Distribution of 100000 samples:
 0: 10.08%
 1: 9.923%
 2: 10.155%
 3: 10.019%
 4: 9.993%
 5: 10.163%
 6: 9.894%
 7: 9.935%
 8: 9.98%
 9: 9.858%

Output Analysis: random_index(10)
Typical Timing: 63 ± 1 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 5
 Maximum: 9
 Mean: 4.51
 Std Deviation: 2.798910502320501
Distribution of 100000 samples:
 0: 10.092%
 1: 9.98%
 2: 9.978%
 3: 10.125%
 4: 9.956%
 5: 9.941%
 6: 10.016%
 7: 9.937%
 8: 9.931%
 9: 10.044%

Output Analysis: random_range(10)
Typical Timing: 94 ± 9 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 4
 Maximum: 9
 Mean: 4.47
 Std Deviation: 2.8543125266865927
Distribution of 100000 samples:
 0: 10.28%
 1: 9.986%
 2: 9.933%
 3: 9.881%
 4: 10.0%
 5: 9.932%
 6: 9.964%
 7: 10.096%
 8: 10.097%
 9: 9.831%

Output Analysis: random_below(-10)
Typical Timing: 77 ± 7 ns
Statistics of 1000 samples:
 Minimum: -9
 Median: (-5, -4)
 Maximum: 0
 Mean: -4.543
 Std Deviation: 2.861494539571935
Distribution of 100000 samples:
 -9: 9.971%
 -8: 10.029%
 -7: 9.991%
 -6: 10.166%
 -5: 10.119%
 -4: 9.895%
 -3: 9.937%
 -2: 9.928%
 -1: 9.995%
 0: 9.969%

Output Analysis: random_index(-10)
Typical Timing: 83 ± 9 ns
Statistics of 1000 samples:
 Minimum: -10
 Median: -6
 Maximum: -1
 Mean: -5.6
 Std Deviation: 2.9024127893874776
Distribution of 100000 samples:
 -10: 9.816%
 -9: 9.916%
 -8: 10.007%
 -7: 9.868%
 -6: 9.966%
 -5: 10.091%
 -4: 10.08%
 -3: 10.155%
 -2: 10.077%
 -1: 10.024%

Output Analysis: random_range(-10)
Typical Timing: 104 ± 7 ns
Statistics of 1000 samples:
 Minimum: -10
 Median: -6
 Maximum: -1
 Mean: -5.546
 Std Deviation: 2.894802929389149
Distribution of 100000 samples:
 -10: 10.073%
 -9: 10.063%
 -8: 9.875%
 -7: 10.11%
 -6: 9.93%
 -5: 9.786%
 -4: 9.875%
 -3: 10.033%
 -2: 10.031%
 -1: 10.224%

Base Case
Output Analysis: Random.randrange(1, 10)
Typical Timing: 1093 ± 44 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 5
 Maximum: 9
 Mean: 4.926
 Std Deviation: 2.5966370558859397
Distribution of 100000 samples:
 1: 10.945%
 2: 11.025%
 3: 11.198%
 4: 11.241%
 5: 11.139%
 6: 10.988%
 7: 11.108%
 8: 11.213%
 9: 11.143%

Output Analysis: random_range(1, 10)
Typical Timing: 90 ± 2 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 5
 Maximum: 9
 Mean: 5.029
 Std Deviation: 2.6241491954536427
Distribution of 100000 samples:
 1: 10.957%
 2: 11.098%
 3: 11.046%
 4: 11.271%
 5: 11.184%
 6: 11.101%
 7: 11.189%
 8: 11.123%
 9: 11.031%

Output Analysis: random_range(10, 1)
Typical Timing: 94 ± 6 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 5
 Maximum: 9
 Mean: 5.083
 Std Deviation: 2.5849779496158183
Distribution of 100000 samples:
 1: 11.117%
 2: 11.064%
 3: 11.013%
 4: 11.136%
 5: 11.243%
 6: 11.113%
 7: 10.934%
 8: 11.174%
 9: 11.206%

Base Case
Output Analysis: Random.randint(-5, 5)
Typical Timing: 1210 ± 51 ns
Statistics of 1000 samples:
 Minimum: -5
 Median: 0
 Maximum: 5
 Mean: -0.045
 Std Deviation: 3.1659082425111436
Distribution of 100000 samples:
 -5: 9.127%
 -4: 9.061%
 -3: 9.208%
 -2: 8.889%
 -1: 8.985%
 0: 9.13%
 1: 9.165%
 2: 9.061%
 3: 8.954%
 4: 9.119%
 5: 9.301%

Output Analysis: random_int(-5, 5)
Typical Timing: 59 ± 2 ns
Statistics of 1000 samples:
 Minimum: -5
 Median: 0
 Maximum: 5
 Mean: 0.192
 Std Deviation: 3.224769139023753
Distribution of 100000 samples:
 -5: 9.116%
 -4: 9.057%
 -3: 9.071%
 -2: 9.254%
 -1: 9.137%
 0: 9.064%
 1: 8.971%
 2: 8.991%
 3: 9.057%
 4: 9.193%
 5: 9.089%

Base Case
Output Analysis: Random.randrange(1, 20, 2)
Typical Timing: 1318 ± 57 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 9
 Maximum: 19
 Mean: 9.894
 Std Deviation: 5.724750125551332
Distribution of 100000 samples:
 1: 9.976%
 3: 10.012%
 5: 10.1%
 7: 10.025%
 9: 9.857%
 11: 10.104%
 13: 9.908%
 15: 10.018%
 17: 10.035%
 19: 9.965%

Output Analysis: random_range(1, 20, 2)
Typical Timing: 91 ± 6 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 9
 Maximum: 19
 Mean: 9.68
 Std Deviation: 5.72796648034885
Distribution of 100000 samples:
 1: 9.979%
 3: 9.961%
 5: 9.94%
 7: 9.919%
 9: 10.053%
 11: 10.112%
 13: 10.091%
 15: 10.025%
 17: 10.006%
 19: 9.914%

Output Analysis: random_range(1, 20, -2)
Typical Timing: 97 ± 8 ns
Statistics of 1000 samples:
 Minimum: 2
 Median: 10
 Maximum: 20
 Mean: 10.914
 Std Deviation: 5.658321659290854
Distribution of 100000 samples:
 2: 9.834%
 4: 10.093%
 6: 10.032%
 8: 10.071%
 10: 9.97%
 12: 10.162%
 14: 10.016%
 16: 9.91%
 18: 9.935%
 20: 9.977%

Output Analysis: random_range(20, 1, -2)
Typical Timing: 105 ± 17 ns
Statistics of 1000 samples:
 Minimum: 2
 Median: 10
 Maximum: 20
 Mean: 10.88
 Std Deviation: 5.657702713999738
Distribution of 100000 samples:
 2: 9.965%
 4: 10.14%
 6: 10.018%
 8: 10.092%
 10: 10.092%
 12: 9.886%
 14: 9.768%
 16: 10.173%
 18: 9.731%
 20: 10.135%

Output Analysis: d(10)
Typical Timing: 61 ± 7 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 6
 Maximum: 10
 Mean: 5.637
 Std Deviation: 2.869012199346667
Distribution of 100000 samples:
 1: 9.997%
 2: 10.111%
 3: 10.14%
 4: 10.095%
 5: 9.947%
 6: 10.038%
 7: 9.935%
 8: 9.89%
 9: 9.942%
 10: 9.905%

Output Analysis: dice(3, 6)
Typical Timing: 127 ± 15 ns
Statistics of 1000 samples:
 Minimum: 3
 Median: 10
 Maximum: 18
 Mean: 10.395
 Std Deviation: 2.925914386990843
Distribution of 100000 samples:
 3: 0.454%
 4: 1.381%
 5: 2.814%
 6: 4.565%
 7: 6.859%
 8: 9.597%
 9: 11.723%
 10: 12.511%
 11: 12.389%
 12: 11.582%
 13: 9.789%
 14: 6.974%
 15: 4.752%
 16: 2.771%
 17: 1.388%
 18: 0.451%

Output Analysis: ability_dice(4)
Typical Timing: 201 ± 10 ns
Statistics of 1000 samples:
 Minimum: 4
 Median: 12
 Maximum: 18
 Mean: 12.219
 Std Deviation: 2.854652167953217
Distribution of 100000 samples:
 3: 0.064%
 4: 0.316%
 5: 0.793%
 6: 1.618%
 7: 2.864%
 8: 4.875%
 9: 6.977%
 10: 9.461%
 11: 11.472%
 12: 12.837%
 13: 13.176%
 14: 12.283%
 15: 10.106%
 16: 7.314%
 17: 4.224%
 18: 1.62%

Output Analysis: plus_or_minus(5)
Typical Timing: 60 ± 6 ns
Statistics of 1000 samples:
 Minimum: -5
 Median: 0
 Maximum: 5
 Mean: 0.004
 Std Deviation: 3.212161888821919
Distribution of 100000 samples:
 -5: 9.057%
 -4: 8.968%
 -3: 9.31%
 -2: 9.172%
 -1: 9.155%
 0: 8.855%
 1: 9.097%
 2: 9.054%
 3: 9.243%
 4: 8.993%
 5: 9.096%

Output Analysis: plus_or_minus_linear(5)
Typical Timing: 83 ± 1 ns
Statistics of 1000 samples:
 Minimum: -5
 Median: 0
 Maximum: 5
 Mean: -0.075
 Std Deviation: 2.353162765301202
Distribution of 100000 samples:
 -5: 2.733%
 -4: 5.442%
 -3: 8.308%
 -2: 11.123%
 -1: 13.801%
 0: 16.88%
 1: 13.876%
 2: 11.232%
 3: 8.298%
 4: 5.526%
 5: 2.781%

Output Analysis: plus_or_minus_gauss(5)
Typical Timing: 112 ± 12 ns
Statistics of 1000 samples:
 Minimum: -5
 Median: 0
 Maximum: 5
 Mean: -0.034
 Std Deviation: 1.5591164164359248
Distribution of 100000 samples:
 -5: 0.212%
 -4: 1.134%
 -3: 4.5%
 -2: 11.412%
 -1: 20.477%
 0: 24.756%
 1: 20.279%
 2: 11.424%
 3: 4.455%
 4: 1.162%
 5: 0.189%


Random Floats:

Base Case
Output Analysis: Random.random()
Typical Timing: 32 ± 2 ns
Statistics of 1000 samples:
 Minimum: 0.0010857964450808888
 Median: (0.47271411022597076, 0.4738083703616446)
 Maximum: 0.9991400351811927
 Mean: 0.48886635506629716
 Std Deviation: 0.29623061799294986
Post-processor distribution of 100000 samples using round method:
 0: 50.385%
 1: 49.615%

Output Analysis: canonical()
Typical Timing: 36 ± 2 ns
Statistics of 1000 samples:
 Minimum: 0.00010379767225209496
 Median: (0.5230044742611665, 0.5232762387176882)
 Maximum: 0.9998081976566571
 Mean: 0.509071846799432
 Std Deviation: 0.28699770881792
Post-processor distribution of 100000 samples using round method:
 0: 49.882%
 1: 50.118%

Output Analysis: random_float(0.0, 10.0)
Typical Timing: 39 ± 4 ns
Statistics of 1000 samples:
 Minimum: 0.007255240808694088
 Median: (4.869081932083987, 4.871947009499598)
 Maximum: 9.975674991143451
 Mean: 4.9787606455619535
 Std Deviation: 2.8640273764673876
Post-processor distribution of 100000 samples using floor method:
 0: 9.856%
 1: 9.987%
 2: 9.873%
 3: 10.177%
 4: 10.048%
 5: 9.853%
 6: 10.072%
 7: 9.905%
 8: 10.137%
 9: 10.092%

Base Case
Output Analysis: Random.triangular(0.0, 10.0, 5.0)
Typical Timing: 465 ± 9 ns
Statistics of 1000 samples:
 Minimum: 0.21871146774866987
 Median: (4.956370373438165, 4.964686165572723)
 Maximum: 9.954056057627652
 Mean: 4.918440913530281
 Std Deviation: 2.0458562003968037
Post-processor distribution of 100000 samples using round method:
 0: 0.527%
 1: 4.072%
 2: 8.15%
 3: 12.073%
 4: 16.006%
 5: 18.864%
 6: 15.905%
 7: 12.014%
 8: 7.969%
 9: 3.917%
 10: 0.503%

Output Analysis: triangular(0.0, 10.0, 5.0)
Typical Timing: 58 ± 8 ns
Statistics of 1000 samples:
 Minimum: 0.24833704139349838
 Median: (5.106729448035762, 5.109742287734658)
 Maximum: 9.936299597966348
 Mean: 5.084459307272849
 Std Deviation: 2.038947288946925
Post-processor distribution of 100000 samples using round method:
 0: 0.487%
 1: 4.019%
 2: 7.912%
 3: 11.901%
 4: 16.093%
 5: 18.743%
 6: 16.184%
 7: 12.134%
 8: 7.964%
 9: 4.072%
 10: 0.491%


Random Booleans:

Output Analysis: percent_true(33.33)
Typical Timing: 43 ± 7 ns
Statistics of 1000 samples:
 Minimum: False
 Median: False
 Maximum: True
 Mean: 0.346
 Std Deviation: 0.4756931784249171
Distribution of 100000 samples:
 False: 66.61%
 True: 33.39%


Shuffle Performance:

some_small_list = [i for i in range(10)]
some_med_list = [i for i in range(100)]
some_large_list = [i for i in range(1000)]

Base Case:
Random.shuffle()
Typical Timing: 7012 ± 268 ns
Typical Timing: 68016 ± 714 ns
Typical Timing: 700327 ± 3736 ns

Fortuna.shuffle()
Typical Timing: 334 ± 28 ns
Typical Timing: 3692 ± 13 ns
Typical Timing: 35540 ± 84 ns


-------------------------------------------------------------------------
Total Test Time: 3.306 seconds

Legal Information

Fortuna © 2019 Robert W Sharp, all rights reserved.

Fortuna is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.

See online version of this license here: http://creativecommons.org/licenses/by-nc/3.0/

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Fortuna-3.9.4.tar.gz (165.8 kB view details)

Uploaded Source

Built Distribution

Fortuna-3.9.4-cp37-cp37m-macosx_10_9_x86_64.whl (140.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file Fortuna-3.9.4.tar.gz.

File metadata

  • Download URL: Fortuna-3.9.4.tar.gz
  • Upload date:
  • Size: 165.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.4.2 requests/2.20.0 setuptools/41.2.0 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.4

File hashes

Hashes for Fortuna-3.9.4.tar.gz
Algorithm Hash digest
SHA256 d9ae4b60c2247ff7e700779e075407a9d50fe2dd2fd16591c82707190a9d3539
MD5 e5719ae08a57f91a47b7c2cd7a3824ab
BLAKE2b-256 f6280758c25aca0b5c977581f077f818ea8c41ad055f770f4e0b6b863a32ddfc

See more details on using hashes here.

Provenance

File details

Details for the file Fortuna-3.9.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: Fortuna-3.9.4-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 140.2 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.4.2 requests/2.20.0 setuptools/41.2.0 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.4

File hashes

Hashes for Fortuna-3.9.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fda37c3b012866cd69b23e003984ec386820a73c3a9ac0b195176581cdadc974
MD5 3954bb7bd146101d2cad15687f782b87
BLAKE2b-256 dfa29315a14cd5ce693696e2c7ecdfc59a09418ed31bb1f731eb433c63a55f89

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page