Skip to main content

A small suit of function for analyzing freezing behavior based on a threshold.

Project description

FrozenPy

FrozenPy is a small collection of Python functions for detecting freezing behavior and averaging data based on a threshold and experimental parameters, with a particular focus on Pavlovian conditioning paradigms. Freezing is detected by thresholding motion data under a defined value (e.g., 10 a.u.) for a defined minimum length of time (1 sec). It also includes functions for converting .out files generated from MedPC to easier-to-handle .csv files.

FrozenPy is designed so that it is easy to add metadata (group, sex, etc.) and formats data for use with popular plotting (Seaborn) and statistical (Pingouin) packages within Python.

Usage

Installation

FrozenPy can easily be installed via pip. Type the following into your terminal to install FrozenPy.

pip install FrozenPy

Read .out files

Converting .out to .raw.csv, read .raw.csv:

# Base directory containing .out files
out_dir = '/path/to/your/.out/files'

# convert all .out files within dir to .raw.csv
fp.read_out(out_dir)

# read .raw.csv
data_raw = fp.read_rawcsv('your_data.raw.csv')

Detect freezing and average

Detect freezing:

# detect freezing
data_freezing = fp.detect_freezing(data_raw)

This is an example for if we wanted to slice and average data with a 3 min baseline, 10s CS, 2s US, 58s ISI, and 5 trials:

# slice data
frz_bl, frz_trials = fp.get_averagedslices(df=data_freezing,
                                         BL=180,
                                         CS=10,
                                         US=2,
                                         Trials=5,
                                         ISI=58,
                                         fs=5,
                                         Behav='Freezing')

This would output two variables: frz_bl which contained the averaged BL data for each subject, and frz_trials which contained CS, US, and ISI data for each subject. These are separated because BL is factorial data whereas Trials are repeated measures.

Notes

This code was developed specifically for the Maren Lab which uses MedPC boxes that measure motion via loadcells, but it should work with any motion data so long as it is in the correct format. If you notice any problems or wish to contribute please don't hesitate to contact me at mictott@gmail.com, open a pull request, or submit an issue.

Future directions

  • take advantage of xarrays (not in the near future)
  • provide visible feedback to allow for threshold adjustments (not in the near future unless needed)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

FrozenPy-0.2.7.tar.gz (6.8 kB view details)

Uploaded Source

Built Distribution

FrozenPy-0.2.7-py3-none-any.whl (12.4 kB view details)

Uploaded Python 3

File details

Details for the file FrozenPy-0.2.7.tar.gz.

File metadata

  • Download URL: FrozenPy-0.2.7.tar.gz
  • Upload date:
  • Size: 6.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.0.0.post20201207 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.7.7

File hashes

Hashes for FrozenPy-0.2.7.tar.gz
Algorithm Hash digest
SHA256 53aee8035d11ab5975ef05d4e8c39e4bddd6d389da8167fcd67ce176257d9db8
MD5 9a9b496bd1ec612988d11f04f9cec95a
BLAKE2b-256 60a4365147630e64449cfb5a8ce45bbdbcd63cfcee48b128498fa7561b5d42f4

See more details on using hashes here.

File details

Details for the file FrozenPy-0.2.7-py3-none-any.whl.

File metadata

  • Download URL: FrozenPy-0.2.7-py3-none-any.whl
  • Upload date:
  • Size: 12.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.0.0.post20201207 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.7.7

File hashes

Hashes for FrozenPy-0.2.7-py3-none-any.whl
Algorithm Hash digest
SHA256 f66db96c7a4590242fe594f0780aae1c0bedfab4ef0c042d2cecad0977c40469
MD5 b91a09ae27a49cd59729939bb7c878b5
BLAKE2b-256 861b2a36ffa1e6eb894e5f4a40550c17194e5b36e26a38c51b811f7e3881de6f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page