Skip to main content

A Python package to iris recognition.

Project description

Gate6 Iris Recognition Package

G6_iris_recognition is a module for eye iris recognition.

Installation needs before installing package module

   python 
   numpy
   opencv-python
   matplotlib
   opencv-contrib-python
   requests
   scikit-image
   scipy
   imutils==0.5.2
  • Create a encodingModel directory & in that directory create a file name irisEncodings.pickle on your project folder (encodingModel/irisEncodings.pickle).
  • Create a Input_database directory & in that directory put person's eye iris images under person's name directory.
    Project/
    ├── encodingModel/
       ├── irisEncodings.pickle/                               # train model
    | 
    ├── Input_database/ 
       ├── person1 name/                                       # person1 directory
    |      ├── eye iris images of person1 /                    # images of person eye iris
       ├── person2 name/                                       # person2 directory
    |      ├── eye iris images of person2 /                    # images of person eye iris
       ├── person3 name/                                       # person3 directory
    |      ├── eye iris images of person3 /                    # images of person eye iris                   

Installation

- Install Python

Windows, Mac, Linux

- Install package module using pip::
  $ pip install -i https://test.pypi.org/simple/ G6-iris-recognition

Run Project

Once all the settings of project are configured, you are ready to run your project. To start import G6_iris_recognition module.

   import G6_iris_recognition

After import, need to train existing images and create encoding module once on start :

   G6_iris_recognition.iris_model_train(train_database_path,train_encoding_model_path)
   train_database_path        ===>  Input_database/
   train_encoding_model_path  ===>  encodingModel/irisEncodings.pickle

Once model is trained then its ready to test with real-time images:

   iris_name = G6_iris_recognition.iris_model_test(test_encoding_model_path,real_time_image_path) 
   test_encoding_model_path   ===>  encodingModel/irisEncodings.pickle
   real_time_image_path       ===>  real-time_image_path
   iris_name                  ===>  it returns predicted person name if image matches with trained image model person image & if not then it returns name as unmatch.

Requirements :

  • Need clearer images from the scanner.
  • Images shouldn't capture on direct sunlight.
  • Person shouldn't use glass or lens on eye scanning.
  • All scanned images need to be on same shapes/size(eg - 320x240).
  • As per image size and quality/noise, need to change parameter of filters according.
  • 90% above eye iris need to be capture on image taken from scanner.
  • Need min 5 clearer images to train a model.
  • After all this done according, set threshold of Hamming Distance to recognize.

Support

If you face any issue in configuration or usage with Gate6 Iris Recognition Package as per the instruction documented above. Please feel free to communicate with Gate6 Iris Recognition Package development team.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

G6_iris_recognition-0.0.2.tar.gz (12.2 kB view details)

Uploaded Source

Built Distribution

G6_iris_recognition-0.0.2-py2-none-any.whl (30.5 kB view details)

Uploaded Python 2

File details

Details for the file G6_iris_recognition-0.0.2.tar.gz.

File metadata

  • Download URL: G6_iris_recognition-0.0.2.tar.gz
  • Upload date:
  • Size: 12.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.20.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.5.0

File hashes

Hashes for G6_iris_recognition-0.0.2.tar.gz
Algorithm Hash digest
SHA256 4ec1960cb015fe946ff5d3ed7f3c2a621e201023c63a987e4191508feed469ee
MD5 a018418f4375752dc2c465f569f37e1a
BLAKE2b-256 ad5361515e1f69af41d2688fb0328c6e4e51e13f7d667aa1848c93b4c2748ffc

See more details on using hashes here.

File details

Details for the file G6_iris_recognition-0.0.2-py2-none-any.whl.

File metadata

  • Download URL: G6_iris_recognition-0.0.2-py2-none-any.whl
  • Upload date:
  • Size: 30.5 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.20.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.5.0

File hashes

Hashes for G6_iris_recognition-0.0.2-py2-none-any.whl
Algorithm Hash digest
SHA256 2416810347fae2467df1cf5a9bc4110dc72a7e271e634eaea1c156dabe207f78
MD5 e6c69f498aa7b9ef66367000e46f1edb
BLAKE2b-256 c998889b0cae5e82a83355179acccb7b363b83bb896cd2fdb57b8d9c36efc14e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page