Skip to main content

A Python package to iris recognition.

Project description

Gate6 Iris Recognition Package

G6_iris_recognition is a module for eye iris recognition.

Installation needs before installing package module

   python 
   numpy
   opencv-python
   matplotlib
   opencv-contrib-python
   requests
   scikit-image
   scipy
   imutils==0.5.2
  • Create a encodingModel directory & in that directory create a file name irisEncodings.pickle on your project folder (encodingModel/irisEncodings.pickle).
  • Create a Input_database directory & in that directory put person's eye iris images under person's name directory.
    Project/
    ├── encodingModel/
       ├── irisEncodings.pickle/                               # train model
    | 
    ├── Input_database/ 
       ├── person1 name/                                       # person1 directory
    |      ├── eye iris images of person1 /                    # images of person eye iris
       ├── person2 name/                                       # person2 directory
    |      ├── eye iris images of person2 /                    # images of person eye iris
       ├── person3 name/                                       # person3 directory
    |      ├── eye iris images of person3 /                    # images of person eye iris                   

Installation

- Install Python

Windows, Mac, Linux

- Install package module using pip::
  $ pip install -i https://test.pypi.org/simple/ G6-iris-recognition

Run Project

Once all the settings of project are configured, you are ready to run your project. To start import G6_iris_recognition module.

   import G6_iris_recognition

After import, need to train existing images and create encoding module once on start :

   G6_iris_recognition.iris_model_train(train_database_path,train_encoding_model_path)
   train_database_path        ===>  Input_database/
   train_encoding_model_path  ===>  encodingModel/irisEncodings.pickle

Once model is trained then its ready to test with real-time images:

   iris_name = G6_iris_recognition.iris_model_test(test_encoding_model_path,real_time_image_path) 
   test_encoding_model_path   ===>  encodingModel/irisEncodings.pickle
   real_time_image_path       ===>  real-time_image_path
   iris_name                  ===>  it returns predicted person name if image matches with trained image model person image & if not then it returns name as unmatch.

Requirements :

  • Need clearer images from the scanner.
  • Images shouldn't capture on direct sunlight.
  • Person shouldn't use glass or lens on eye scanning.
  • All scanned images need to be on same shapes/size(eg - 320x240).
  • As per image size and quality/noise, need to change parameter of filters according.
  • 90% above eye iris need to be capture on image taken from scanner.
  • Need min 5 clearer images to train a model.
  • After all this done according, set threshold of Hamming Distance to recognize.

Support

If you face any issue in configuration or usage with Gate6 Iris Recognition Package as per the instruction documented above. Please feel free to communicate with Gate6 Iris Recognition Package development team.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

G6_iris_recognition-0.0.3.tar.gz (9.4 kB view details)

Uploaded Source

Built Distribution

G6_iris_recognition-0.0.3-py2-none-any.whl (27.0 kB view details)

Uploaded Python 2

File details

Details for the file G6_iris_recognition-0.0.3.tar.gz.

File metadata

  • Download URL: G6_iris_recognition-0.0.3.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.20.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.5.0

File hashes

Hashes for G6_iris_recognition-0.0.3.tar.gz
Algorithm Hash digest
SHA256 a3635a5309ed2de8ec1bf4746d8e5e79eb554284f0511f30a124504aa2c359a5
MD5 3ce68a6cb0e22fb668e23b580a28d830
BLAKE2b-256 1685ea7e2d7a842cdfab5159ba77170ae341d1619bda022979d0a99fb28a7af7

See more details on using hashes here.

File details

Details for the file G6_iris_recognition-0.0.3-py2-none-any.whl.

File metadata

  • Download URL: G6_iris_recognition-0.0.3-py2-none-any.whl
  • Upload date:
  • Size: 27.0 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.20.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.5.0

File hashes

Hashes for G6_iris_recognition-0.0.3-py2-none-any.whl
Algorithm Hash digest
SHA256 1c3b12d0fa35a67865206bd616cce6f53cf9cc84404c901949892b75c706882a
MD5 2c9af28f49e472fe2d76425b1b659f3c
BLAKE2b-256 2a7bd94ac2afeef4c27dd458553fcff6c2ffde2302b96a44b7302ca12386fe1d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page