Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

A utility to download GFS meteo data

Project Description
=======
# gfsDownload
Tools for downloading gfs meteo parameters modelling estimation on an area and on a specific time.
GFS is a product of NCEP,NOAA and provide a full range of product which are describe in
http://www.nco.ncep.noaa.gov/pmb/products/gfs/


<h2>Installation<b></h2>

mkdir PATH/TO/INSTALL <br>
cd PATH/TO/INSTALL/gfsDownload <br>
git clone git+git://github.com/yoannMoreau/gfsDownload.git <br>
sudo apt-get install grib-api
sudo apt-get install libopenjpeg
sudo apt-get install pyproj
python python/GFSDownload.py -help <br>

( or you cas Use pip to install gfsDownload )

<h2>Overview: What can gfsDownload do?</h2>

gfsDownload has a main function, allow download of parameters on a area in an automatic way

<u>Four paramaters are mandatory: <br><br></u>
<b> --Code of Parameters <gfsDownload></b><br>
A list of code which define parameters desired. Code reference can be found on :<br>
<a href="http://www.nco.ncep.noaa.gov/pmb/products/gfs/gfs_upgrade/gfs.t06z.pgrb2.0p25.anl.shtml">For analyse </a><br>
<a href="http://www.nco.ncep.noaa.gov/pmb/products/gfs/gfs_upgrade/gfs.t06z.pgrb2.0p25.f006.shtml">For forecast </a><br>
</u>CODE PARAMETERS Exemple :</u><br>
total precipitation : APCP <i>[m of water]</i><br>
temperature : TMP <i>[K]</i><br>
pressure : PRES <i>[Pa]</i><br>
dewpoint : DPT <i>[K]</i><br>
eastward wind component UGRD <i>[m s-1]</i><br>
northward wind component VGRD <i>[m s-1]</i>
<br><br>
<b>--Interval needed : </b><br>
init date <dateStart YYYY-MM-DD>' AND end date <dateEnd YY-MM-DD>'
these parameters should be in a 14 days range from maximum date today
<br><br>
<b>--Area needed </b><br>
shapefile <pathToShapefile> (srs is not important because it will be reprojected in WGS84)
OR
--Extend <xmin,ymax,xmax,ymin> in WGS84
<br><br>

<b>EXAMPLES :</b><br>
<i>--temperature on a shapefile during the first to the second of january <br></i>
python GFSDownload.py -c TMP -i 2014-01-01 -e 2014-01-02 -s PATH_TO_SHAPE'<br>
<i>--pressure and dewPoint on a area during the first month of 2015 on a specific extend<br></i>
python eraInterimDownload.py -c PRES,DPT -i 2015-01-01 -e 2015-02-01 -E xmin,ymax,xmax,ymin'<br>
<br><br>
<u>Five paramaters are optional: </u><br><br>
<b>--Step <gfsDownload Step> (default 0)' </b><br>
The step of modeling.
The step of itarate data over the days choosen !
default is 0,6,12,18.
A list is possible for that parameter
<br><br>
python GFSDownload.py -c TMP -i 2013-11-08 -e 2013-12-09 -E xmin,ymax,xmax,ymin -p 0,6'
<br><br>
<b>--Grid <grid spacing on °.arc> (default 0)'</b>
<br><br>
The spacing of final raster. grid possible : 0.25/0.5/1/2.5
default is 0.25
<br><br>
python GFSDownload.py -c TMP -i 2015-04-19 -e 2015-04-19 -E xmin,ymax,xmax,ymin -g 0.5'
<br><br>
<b>--Outfile <Path to downloaded Raster> (default /home/user/eraInterim)'</b>
<br><br>
python GFSDownload.py -c PRES -i 2011-10-01 -e 2011-10-02 -E xmin,ymax,xmax,ymin -o PATH/TO/FILE'
All downloaded raster are tif with a VAR_LEVEL_DateInit_DateEnd.tif name
<br><br>
<b>--proxy <proxy : True/False></b> (default False)
<br><br>
Sometimes a proxy definition is needed for downloading from external network.
When this option is activated, a proxy user/key/site could be defined to overpass it
<br><br>
<h2>Important Notes </h2>

All downloaded and processed images are stored by default in your home directory in GFS forlder: ~/GFS
<br><br>
To Do List
<br><br>
Improve console output<br>
Maintain with bug error <br>
Release History

Release History

This version
History Node

0.0.2

History Node

0.0.1

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
GFSDownload-0.0.2.tar.gz (10.0 kB) Copy SHA256 Checksum SHA256 Source Apr 21, 2015

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting