Skip to main content

A utility to download GFS meteo data

Project description

=======
# gfsDownload
Tools for downloading gfs meteo parameters modelling estimation on an area and on a specific time.
GFS is a product of NCEP,NOAA and provide a full range of product which are describe in
http://www.nco.ncep.noaa.gov/pmb/products/gfs/


<h2>Installation<b></h2>

mkdir PATH/TO/INSTALL <br>
cd PATH/TO/INSTALL/gfsDownload <br>
git clone git+git://github.com/yoannMoreau/gfsDownload.git <br>
sudo apt-get install grib-api
sudo apt-get install libopenjpeg
sudo apt-get install pyproj
python python/GFSDownload.py -help <br>

( or you cas Use pip to install gfsDownload )

<h2>Overview: What can gfsDownload do?</h2>

gfsDownload has a main function, allow download of parameters on a area in an automatic way

<u>Four paramaters are mandatory: <br><br></u>
<b> --Code of Parameters <gfsDownload></b><br>
A list of code which define parameters desired. Code reference can be found on :<br>
<a href="http://www.nco.ncep.noaa.gov/pmb/products/gfs/gfs_upgrade/gfs.t06z.pgrb2.0p25.anl.shtml">For analyse </a><br>
<a href="http://www.nco.ncep.noaa.gov/pmb/products/gfs/gfs_upgrade/gfs.t06z.pgrb2.0p25.f006.shtml">For forecast </a><br>
</u>CODE PARAMETERS Exemple :</u><br>
total precipitation : APCP <i>[m of water]</i><br>
temperature : TMP <i>[K]</i><br>
pressure : PRES <i>[Pa]</i><br>
dewpoint : DPT <i>[K]</i><br>
eastward wind component UGRD <i>[m s-1]</i><br>
northward wind component VGRD <i>[m s-1]</i>
<br><br>
<b>--Interval needed : </b><br>
init date <dateStart YYYY-MM-DD>' AND end date <dateEnd YY-MM-DD>'
these parameters should be in a 14 days range from maximum date today
<br><br>
<b>--Area needed </b><br>
shapefile <pathToShapefile> (srs is not important because it will be reprojected in WGS84)
OR
--Extend <xmin,ymax,xmax,ymin> in WGS84
<br><br>

<b>EXAMPLES :</b><br>
<i>--temperature on a shapefile during the first to the second of january <br></i>
python GFSDownload.py -c TMP -i 2014-01-01 -e 2014-01-02 -s PATH_TO_SHAPE'<br>
<i>--pressure and dewPoint on a area during the first month of 2015 on a specific extend<br></i>
python eraInterimDownload.py -c PRES,DPT -i 2015-01-01 -e 2015-02-01 -E xmin,ymax,xmax,ymin'<br>
<br><br>
<u>Five paramaters are optional: </u><br><br>
<b>--Step <gfsDownload Step> (default 0)' </b><br>
The step of modeling.
The step of itarate data over the days choosen !
default is 0,6,12,18.
A list is possible for that parameter
<br><br>
python GFSDownload.py -c TMP -i 2013-11-08 -e 2013-12-09 -E xmin,ymax,xmax,ymin -p 0,6'
<br><br>
<b>--Grid <grid spacing on °.arc> (default 0)'</b>
<br><br>
The spacing of final raster. grid possible : 0.25/0.5/1/2.5
default is 0.25
<br><br>
python GFSDownload.py -c TMP -i 2015-04-19 -e 2015-04-19 -E xmin,ymax,xmax,ymin -g 0.5'
<br><br>
<b>--Outfile <Path to downloaded Raster> (default /home/user/eraInterim)'</b>
<br><br>
python GFSDownload.py -c PRES -i 2011-10-01 -e 2011-10-02 -E xmin,ymax,xmax,ymin -o PATH/TO/FILE'
All downloaded raster are tif with a VAR_LEVEL_DateInit_DateEnd.tif name
<br><br>
<b>--proxy <proxy : True/False></b> (default False)
<br><br>
Sometimes a proxy definition is needed for downloading from external network.
When this option is activated, a proxy user/key/site could be defined to overpass it
<br><br>
<h2>Important Notes </h2>

All downloaded and processed images are stored by default in your home directory in GFS forlder: ~/GFS
<br><br>
To Do List
<br><br>
Improve console output<br>
Maintain with bug error <br>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GFSDownload-0.0.2.tar.gz (10.0 kB view details)

Uploaded Source

File details

Details for the file GFSDownload-0.0.2.tar.gz.

File metadata

  • Download URL: GFSDownload-0.0.2.tar.gz
  • Upload date:
  • Size: 10.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for GFSDownload-0.0.2.tar.gz
Algorithm Hash digest
SHA256 9ed5cb86b61d2755383e07f9c24460bbef75dd46c1dd9d695cdeca593e3aec4e
MD5 c43b37854014807edb56f7cef99dcc25
BLAKE2b-256 16899736baf67dc2f31e0172701352c3d8c4bc065b1124246770c49485fcead0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page