Skip to main content

Automating Data Science

Project description

GML Brain+Machine Adding AI Revolution

Generic badge Generic badge Generic badge Generic badge
PyPI version PyPI license PyPI pyversions GitHub issues

Creators

Muhammad Ahmed
Naman Tuli

Contributors

Rafey Iqbal Rahman

Tired of doing Data Science manually? GML is here for you!

GML is an automatic data science library in python built on top of multiple Python packages. Complete features which we offer are listed as:


Installation:


pip install GML

https://pypi.org/project/GML

Features:


Auto Feature Engineering



from GML import FeatureEngineering

fe = FeatureEngineering(Data, 'target', fill_missing_data=True, encode_data=True, 
                        normalize=True, remove_outliers=True, 
                        new_features=True, feateng_steps=2 ) # feateng_steps = 0 for features selection without feature creation

X_new, y, test = fe.get_new_data()

Click Here for complete DEMO


Auto EDA (Powered by Sweetviz)



from GML import sweetviz

result1 = sweetviz.compare([train,'train'],[test,'test'],'target') 
result2 = sweetviz.analyze([train,'train'])

result.show_html()
result2.show_html()

Click Here for complete DEMO


Auto Machine Learning



from GML import AutoML

gml_ml = AutoML()

gml_ml.GMLClassifier(X, y, metric = accuracy_score, folds = 10)

Click Here for complete DEMO

Auto Text Cleaning



from GML import AutoNLP

nlp = AutoNLP()

cleanX = X.apply(lambda x: nlp.clean(x))

Click Here for complete DEMO


Auto Text Classification using transformers



from GML import AutoNLP

nlp = AutoNLP()

nlp.set_params(cleanX, tokenizer_name='roberta-large-mnli', BATCH_SIZE=4,
               model_name='roberta-large-mnli', MAX_LEN=200)

model = nlp.train_model(tokenizedX, y)

Click Here for complete DEMO


Auto Image Classification with Augmentation



from GML import Auto_Image_Processing

gml_image_processing = Auto_Image_Processing()

model = gml_image_processing.imgClassificationcsv(img_path = './covid_image_data/train', 
                                                  train_path = './covid_image_data/Training_set_covid.csv', 
                                                  model_list = models,
                                                 tfms = True, advance_augmentation = True, 
                                                  epochs=1)

Click Here for complete DEMO


Text Augmentation using transformers: GPT-2



from GML import AutoNLP

nlp = AutoNLP()

nlp.augmentation_train('./data.csv')

nlp.set_params(X['Text'])

new_Text = nlp.augmentation_generate(y = y, SENTENCES = 100) 

Click Here for complete DEMO



More cool features and handling of different data types like audio data etc will be added in future.
Feel free to give suggestions, report bugs and contribute.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GML-3.0.6.tar.gz (15.4 MB view details)

Uploaded Source

Built Distribution

GML-3.0.6-py3-none-any.whl (15.5 MB view details)

Uploaded Python 3

File details

Details for the file GML-3.0.6.tar.gz.

File metadata

  • Download URL: GML-3.0.6.tar.gz
  • Upload date:
  • Size: 15.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for GML-3.0.6.tar.gz
Algorithm Hash digest
SHA256 a9a6467602c17f8f75929a2615b18c93dbcc0770577fc322cbb9ddfaf91ace4f
MD5 47a6995cbe8673349f43dc3b9f9218d3
BLAKE2b-256 cc09183c8061d0df2c5c910c2f99d36e704086a844b132cf9b787a53e5f67de2

See more details on using hashes here.

File details

Details for the file GML-3.0.6-py3-none-any.whl.

File metadata

  • Download URL: GML-3.0.6-py3-none-any.whl
  • Upload date:
  • Size: 15.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for GML-3.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 379d1838a8d19a449853a19ebbbb1063b01d669f49da8486c68ffc919468b0aa
MD5 115fd719069c8063239d297aa3638a09
BLAKE2b-256 3163533763abd3caf6704f3d170f0b75968b71281f60d10aadf8f548389b1d67

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page