Skip to main content

Genetics-informed pathogenic spatial mapping

Project description

GPS

How to use:

STEP-1: Find the latent representations

root=/storage/yangjianLab/songliyang/SpatialData/Data/Brain/Human/Nature_Neuroscience_2021/processed/h5ad

ls ${root} | while read file
do
   name=($(echo ${file} | cut -d'.' -f 1)) 

   command="python3 /storage/yangjianLab/songliyang/SpatialData/spatial_ldsc_v1/Find_Latent_Representations.py \
   --spe_path ${root} \
   --spe_name ${file} \
   --annotation layer_guess \
   --type count \
   --spe_out /storage/yangjianLab/songliyang/SpatialData/Data/Brain/Human/Nature_Neuroscience_2021/annotation/${name}/h5ad"

    qsubshcom_gpu "$command" 1 50G GAT_${name} 2:00:00 "--qos gpu-huge -queue=v100,a40-tmp,a40-quad"
done

STEP-2: Find marker genes

root=/storage/yangjianLab/songliyang/SpatialData/Data/Brain/Human/Nature_Neuroscience_2021/processed/h5ad
ls ${root} | grep h5ad | while read file
do
	name=($(echo ${file} | cut -d'.' -f 1))

	command="python3 /storage/yangjianLab/songliyang/SpatialData/spatial_ldsc_v1/Latent_to_Gene_V2.py \
	--latent_representation latent_GVAE \
	--spe_path /storage/yangjianLab/songliyang/SpatialData/Data/Brain/Human/Nature_Neuroscience_2021/annotation/${name}/h5ad \
	--spe_name ${name}_add_latent.h5ad \
	--num_processes 4 \
	--type count \
	--annotation layer_guess \
	--num_neighbour 51 \
	--spe_out /storage/yangjianLab/songliyang/SpatialData/Data/Brain/Human/Nature_Neuroscience_2021/annotation/${name}/gene_markers"

	qsubshcom "$command" 4 50G mkS_${name} 24:00:00 "--qos huge -queue=intel-sc3,amd-ep2,amd-ep2-short"
done

STEP-3: markers to SNP annotations

root=/storage/yangjianLab/songliyang/SpatialData/Data/Brain/Human/Nature_Neuroscience_2021/processed/h5ad
ls ${root} | grep h5ad | while read file
do
	name=($(echo ${file} | cut -d'.' -f 1))

	command="python3 /storage/yangjianLab/songliyang/SpatialData/spatial_ldsc_v1/Make_Annotations_V2.py \
	--mk_score_file /storage/yangjianLab/songliyang/SpatialData/Data/Brain/Human/Nature_Neuroscience_2021/annotation/${name}/gene_markers/${name}_rank.feather \
	--gtf_file /storage/yangjianLab/songliyang/ReferenceGenome/GRCh37/gencode.v39lift37.annotation.gtf \
	--bfile_root /storage/yangjianLab/sharedata/LDSC_resource/1000G_EUR_Phase3_plink/1000G.EUR.QC \
	--annot_root /storage/yangjianLab/songliyang/SpatialData/Data/Brain/Human/Nature_Neuroscience_2021/annotation/${name}/snp_annotation \
	--keep_snp /storage/yangjianLab/sharedata/LDSC_resource/hapmap3_snps/hm \
	--annot_name ${name} \
	--const_max_size 500 \
	--chr {TASK_ID} \
	--ld_wind_cm 1"

	qsubshcom "$command" 5 60G annS_${name} 24:00:00 "-array=1-22 --qos huge -queue=intel-sc3,amd-ep2,amd-ep2-short"
done

STEP-4: LDSC analysis

gwas_root=/storage/yangjianLab/songliyang/GWAS_trait/LDSC
gwas_trait=/storage/yangjianLab/songliyang/GWAS_trait/GWAS_Public_Use_MaxPower.csv 
root=/storage/yangjianLab/songliyang/SpatialData/Data/Brain/Human/Nature_Neuroscience_2021/processed/h5ad

ls ${root} | grep h5ad | while read file
do

  spe_name=($(echo ${file} | awk -F "." '{print $1}')) 
  ld_pth=/storage/yangjianLab/songliyang/SpatialData/Data/Brain/Human/Nature_Neuroscience_2021/annotation/${spe_name}/snp_annotation
  out_pth=/storage/yangjianLab/songliyang/SpatialData/Data/Brain/Human/Nature_Neuroscience_2021/ldsc_enrichment/${spe_name}


  awk -F"," 'NR>1 {print $1}' ${gwas_trait} | awk -F ".txt" '{print $1}' | while read gwas_file
  do

  out_file=${out_pth}/${spe_name}_${gwas_file}.gz
  command="python3 /storage/yangjianLab/songliyang/SpatialData/spatial_ldsc_v1/Spatial_LDSC.py \
  --h2 ${gwas_root}/${gwas_file}.sumstats.gz \
  --w_file /storage/yangjianLab/sharedata/LDSC_resource/LDSC_SEG_ldscores/weights_hm3_no_hla/weights. \
  --data_name ${spe_name} \
  --num_processes 3 \
  --ld_file ${ld_pth} \
  --out_file ${out_pth}"

  qsubshcom "$command" 3 100G h2_${spe_name}_${gwas_file} 24:00:00 "--qos huge -queue=intel-sc3,amd-ep2,amd-ep2-short"
  
  done
done

STEP-5: Do Cauchy combination test for pre-defined annotation

root=/storage/yangjianLab/songliyang/SpatialData/Data/Brain/Human/Nature_Neuroscience_2021/processed/h5ad
ldsc_root=/storage/yangjianLab/songliyang/SpatialData/Data/Brain/Human/Nature_Neuroscience_2021/ldsc_enrichment/

ls ${root} | grep h5ad | while read file 
do
  spe_name=($(echo ${file} | awk -F "." '{print $1}')) 

  ls ${ldsc_root}/${spe_name} | grep '.gz' | grep -v 'Cauchy' | while read trait
  do
  
  command="python3 /storage/yangjianLab/songliyang/SpatialData/spatial_ldsc_v1/Cauchy_combination.py \
  --ldsc_path ${ldsc_root}/${spe_name} \
  --ldsc_name ${trait} \
  --spe_path  /storage/yangjianLab/songliyang/SpatialData/Data/Brain/Human/Nature_Neuroscience_2021/annotation/${spe_name}/h5ad/ \
  --spe_name ${spe_name}_add_latent.h5ad \
  --annotation layer_guess"
  
  qsubshcom "$command" 1 20G cahchy_${trait} 2:00:00 "--qos huge -queue=intel-sc3,amd-ep2,amd-ep2-short"
  # $command

  done
done

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gps_mapping-1.0.1.tar.gz (67.5 kB view details)

Uploaded Source

Built Distribution

gps_mapping-1.0.1-py3-none-any.whl (74.9 kB view details)

Uploaded Python 3

File details

Details for the file gps_mapping-1.0.1.tar.gz.

File metadata

  • Download URL: gps_mapping-1.0.1.tar.gz
  • Upload date:
  • Size: 67.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.31.0

File hashes

Hashes for gps_mapping-1.0.1.tar.gz
Algorithm Hash digest
SHA256 dd0745556a5d0518aec9759899f1d3c7f0176c0a7d532cd532bd05239ce70988
MD5 133627371043c8576bd1d90d0777f8b5
BLAKE2b-256 2a7fe8ae8229cc76eeb57cd66073b1a7bb7d60d8f1e22e655e8931e3336dfd23

See more details on using hashes here.

File details

Details for the file gps_mapping-1.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for gps_mapping-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4093ebf750a351af84d9c7a3dd16860768d5f9677324b8c772bdfd3f271347d2
MD5 167cdf403ead4d3f7c6e88787992a99c
BLAKE2b-256 4f924258f56e42b93496417765fe7bf1c95b9847c4fbb14d67dd8994958b16d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page