Skip to main content

The Gaussian Process Toolbox

Project description

# GPy

The Gaussian processes framework in Python.

* GPy [homepage](http://sheffieldml.github.io/GPy/)
* Tutorial [notebooks](http://nbviewer.ipython.org/github/SheffieldML/notebook/blob/master/GPy/index.ipynb)
* User [mailing-list](https://lists.shef.ac.uk/sympa/subscribe/gpy-users)
* Developer [documentation](http://pythonhosted.org/GPy/)
* Travis-CI [unit-tests](https://travis-ci.org/SheffieldML/GPy)
* [![licence](https://img.shields.io/badge/licence-BSD-blue.svg)](http://opensource.org/licenses/BSD-3-Clause)

[![develstat](https://travis-ci.org/SheffieldML/GPy.svg?branch=devel)](https://travis-ci.org/SheffieldML/GPy) [![covdevel](http://codecov.io/github/SheffieldML/GPy/coverage.svg?branch=devel)](http://codecov.io/github/SheffieldML/GPy?branch=devel) [![Research software impact](http://depsy.org/api/package/pypi/GPy/badge.svg)](http://depsy.org/package/python/GPy)

## Updated Structure

We have pulled the core parameterization out of GPy. It is a package called [paramz](https://github.com/sods/paramz) and is the pure gradient based model optimization.

If you installed GPy with pip, just upgrade the package using:

$ pip install --upgrade GPy

If you have the developmental version of GPy (using the develop or -e option) just install the dependencies by running

$ python setup.py develop

again, in the GPy installation folder.

A warning: This usually works, but sometimes `distutils/setuptools` opens a
whole can of worms here, specially when compiled extensions are involved.
If that is the case, it is best to clean the repo and reinstall.

## Supported Platforms:

[<img src="https://www.python.org/static/community_logos/python-logo-generic.svg" height=40px>](https://www.python.org/)
[<img src="https://upload.wikimedia.org/wikipedia/commons/5/5f/Windows_logo_-_2012.svg" height=40px>](http://www.microsoft.com/en-gb/windows)
[<img src="https://upload.wikimedia.org/wikipedia/commons/8/8e/OS_X-Logo.svg" height=40px>](http://www.apple.com/osx/)
[<img src="https://upload.wikimedia.org/wikipedia/commons/3/35/Tux.svg" height=40px>](https://en.wikipedia.org/wiki/List_of_Linux_distributions)

Python 2.7, 3.4 and higher

## Citation

@Misc{gpy2014,
author = {{The GPy authors}},
title = {{GPy}: A Gaussian process framework in python},
howpublished = {\url{http://github.com/SheffieldML/GPy}},
year = {2012--2015}
}

### Pronounciation:

We like to pronounce it 'g-pie'.

## Getting started: installing with pip

We are now requiring the newest version (0.16) of
[scipy](http://www.scipy.org/) and thus, we strongly recommend using
the [anaconda python distribution](http://continuum.io/downloads).
With anaconda you can install GPy by the following:

conda update scipy
pip install gpy

We've also had luck with [enthought](http://www.enthought.com). Install scipy 0.16 (or later)
and then pip install GPy:

pip install gpy

If you'd like to install from source, or want to contribute to the project (i.e. by sending pull requests via github), read on.

### Troubleshooting installation problems

If you're having trouble installing GPy via `pip install GPy` here is a probable solution:

git clone https://github.com/SheffieldML/GPy.git
cd GPy
git checkout devel
python setup.py build_ext --inplace
nosetests GPy/testing

### Direct downloads

[![PyPI version](https://badge.fury.io/py/GPy.svg)](https://pypi.python.org/pypi/GPy) [![source](https://img.shields.io/badge/download-source-green.svg)](https://pypi.python.org/pypi/GPy)
[![Windows](https://img.shields.io/badge/download-windows-orange.svg)](https://pypi.python.org/pypi/GPy)
[![MacOSX](https://img.shields.io/badge/download-macosx-blue.svg)](https://pypi.python.org/pypi/GPy)

## Running unit tests:

Ensure nose is installed via pip:

pip install nose

Run nosetests from the root directory of the repository:

nosetests -v GPy/testing

or from within IPython

import GPy; GPy.tests()

or using setuptools

python setup.py test

## Ubuntu hackers

> Note: Right now the Ubuntu package index does not include scipy 0.16.0, and thus, cannot
> be used for GPy. We hope this gets fixed soon.

For the most part, the developers are using ubuntu. To install the required packages:

sudo apt-get install python-numpy python-scipy python-matplotlib

clone this git repository and add it to your path:

git clone git@github.com:SheffieldML/GPy.git ~/SheffieldML
echo 'PYTHONPATH=$PYTHONPATH:~/SheffieldML' >> ~/.bashrc


## Compiling documentation:

The documentation is stored in doc/ and is compiled with the Sphinx Python documentation generator, and is written in the reStructuredText format.

The Sphinx documentation is available here: http://sphinx-doc.org/latest/contents.html

**Installing dependencies:**

To compile the documentation, first ensure that Sphinx is installed. On Debian-based systems, this can be achieved as follows:

sudo apt-get install python-pip
sudo pip install sphinx

**Compiling documentation:**

The documentation can be compiled as follows:

cd doc
sphinx-apidoc -o source/ ../GPy/
make html

The HTML files are then stored in doc/build/html

## Funding Acknowledgements

Current support for the GPy software is coming through the following projects.

* [EU FP7-HEALTH Project Ref 305626](http://radiant-project.eu) "RADIANT: Rapid Development and Distribution of Statistical Tools for High-Throughput Sequencing Data"

* [EU FP7-PEOPLE Project Ref 316861](http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/projects/mlpm/) "MLPM2012: Machine Learning for Personalized Medicine"

* MRC Special Training Fellowship "Bayesian models of expression in the transcriptome for clinical RNA-seq"

* [EU FP7-ICT Project Ref 612139](http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/projects/wysiwyd/) "WYSIWYD: What You Say is What You Did"

Previous support for the GPy software came from the following projects:

- [BBSRC Project No BB/K011197/1](http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/projects/recombinant/) "Linking recombinant gene sequence to protein product manufacturability using CHO cell genomic resources"
- [EU FP7-KBBE Project Ref 289434](http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/projects/biopredyn/) "From Data to Models: New Bioinformatics Methods and Tools for Data-Driven Predictive Dynamic Modelling in Biotechnological Applications"
- [BBSRC Project No BB/H018123/2](http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/projects/iterative/) "An iterative pipeline of computational modelling and experimental design for uncovering gene regulatory networks in vertebrates"
- [Erasysbio](http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/projects/synergy/) "SYNERGY: Systems approach to gene regulation biology through nuclear receptors"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GPy-1.0.7.tar.gz (791.6 kB view details)

Uploaded Source

Built Distributions

GPy-1.0.7-cp35-none-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.5 Windows x86-64

GPy-1.0.7-cp35-cp35m-macosx_10_5_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.5m macOS 10.5+ x86-64

GPy-1.0.7-cp34-cp34m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.4m Windows x86-64

GPy-1.0.7-cp34-cp34m-macosx_10_5_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.4m macOS 10.5+ x86-64

GPy-1.0.7-cp33-cp33m-macosx_10_5_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.3m macOS 10.5+ x86-64

GPy-1.0.7-cp27-none-win_amd64.whl (1.2 MB view details)

Uploaded CPython 2.7 Windows x86-64

GPy-1.0.7-cp27-cp27m-macosx_10_5_x86_64.whl (1.2 MB view details)

Uploaded CPython 2.7m macOS 10.5+ x86-64

File details

Details for the file GPy-1.0.7.tar.gz.

File metadata

  • Download URL: GPy-1.0.7.tar.gz
  • Upload date:
  • Size: 791.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for GPy-1.0.7.tar.gz
Algorithm Hash digest
SHA256 7d6fd7e418951171085fbae347217d0f30aaefdaccd47c792e5fcd50be667008
MD5 ae2ea7f42fb0189e0497b5d5bcb04d12
BLAKE2b-256 0c142eeedddc37027c9bf3539e57a80883f629d84438ebc71558070ebfe09a78

See more details on using hashes here.

File details

Details for the file GPy-1.0.7-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for GPy-1.0.7-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 1e1b916f4196d0a3a0f4581d369692d3eec1ba31537010e784ee290df2ecaba0
MD5 28aa8b11f31219beb2d30f73e6fa2dc5
BLAKE2b-256 8f80d0b96ca9efe86b04e93cbff74716447c99df150aa1f0c059101108cb6651

See more details on using hashes here.

File details

Details for the file GPy-1.0.7-cp35-cp35m-macosx_10_5_x86_64.whl.

File metadata

File hashes

Hashes for GPy-1.0.7-cp35-cp35m-macosx_10_5_x86_64.whl
Algorithm Hash digest
SHA256 0aa9eedcf91348c843b830a183e536d2548c94201a947c39d74b3c172ca15798
MD5 eac77d9f624824dba73870a21506bcd8
BLAKE2b-256 f2580bd36ba77046caf22d0a165d0869236509dcdf1c778ae3b643331724140a

See more details on using hashes here.

File details

Details for the file GPy-1.0.7-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for GPy-1.0.7-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 756f9ddd2d46fbcf40805aa4da719f874d0704c2e3fbf6e9c8b95dd665fbf0b2
MD5 6338b11909e10b7247c958227059b164
BLAKE2b-256 2ce1605e9b10a16a07e6998061fad64e41fc9fc8b5b4665be5133d017dc650e9

See more details on using hashes here.

File details

Details for the file GPy-1.0.7-cp34-cp34m-macosx_10_5_x86_64.whl.

File metadata

File hashes

Hashes for GPy-1.0.7-cp34-cp34m-macosx_10_5_x86_64.whl
Algorithm Hash digest
SHA256 5af79bed4f09110e858d4b4a9706c91a7dac438a4171a33a60e13b47cd847310
MD5 e9c6b24342fc92c2399732367deef36b
BLAKE2b-256 468ca9f8417ef7c76cff154b48d2819c4c5c94494d623b4d67adc6af74ec0678

See more details on using hashes here.

File details

Details for the file GPy-1.0.7-cp33-cp33m-macosx_10_5_x86_64.whl.

File metadata

File hashes

Hashes for GPy-1.0.7-cp33-cp33m-macosx_10_5_x86_64.whl
Algorithm Hash digest
SHA256 430cf57becc9c6907dc8667ad70838baa563d8a5153b8835677c7edab4af7ff0
MD5 4d520ad878581e42bc48144f4042cce6
BLAKE2b-256 88e085bb7b6ce481358094d403958febf64d635c1487a91ee396ef7ffb6ac2da

See more details on using hashes here.

File details

Details for the file GPy-1.0.7-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for GPy-1.0.7-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 d90ba6a22a42cdfe39002189fbabbd4e5fc4cc559baed6d7255528fa0ce34d4a
MD5 45878103c3064e1f8bf13fa4a9e2e23a
BLAKE2b-256 c547be91d972c44106d810ae08f32e2ded4d09b986e1ae8f5f373c4483d075d4

See more details on using hashes here.

File details

Details for the file GPy-1.0.7-cp27-cp27m-macosx_10_5_x86_64.whl.

File metadata

File hashes

Hashes for GPy-1.0.7-cp27-cp27m-macosx_10_5_x86_64.whl
Algorithm Hash digest
SHA256 56a19227f340da8c88b8029575adcb6f5b492d9efe3b6c5e62e37bda2f6f27c4
MD5 14eae760bb56c76a159f24b06ef35bbb
BLAKE2b-256 b5cda8c34cba6fab91138d56433e7fd8ddb7a23821f79497062c419e41f5b146

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page