Skip to main content

The Bayesian Optimization Toolbox

Project description

-Alan Saul -Andreas Damianou -Andrei Paleyes -Fela Winkelmolen -Huibin Shen -James Hensman -Javier Gonzalez -Jordan Massiah -Josh Fass -Neil Lawrence -Rasmus Berg Palm -Rodolphe Jenatton -Simon Kamronn -Zhenwen Dai -see also GPy and GPyOpt contributors in GitHub Author-email: j.h.gonzalez@sheffield.ac.uk License: BSD 3-clause Description: # GPyOpt

Gaussian process optimization using [GPy](http://sheffieldml.github.io/GPy/). Performs global optimization with different acquisition functions. Among other functionalities, it is possible to use GPyOpt to optimize physical experiments (sequentially or in batches) and tune the parameters of Machine Learning algorithms. It is able to handle large data sets via sparse Gaussian process models.

[![licence](https://img.shields.io/badge/licence-BSD-blue.svg)](http://opensource.org/licenses/BSD-3-Clause) [![develstat](https://travis-ci.org/SheffieldML/GPyOpt.svg?branch=master)](https://travis-ci.org/SheffieldML/GPyOpt) [![covdevel](http://codecov.io/github/SheffieldML/GPyOpt/coverage.svg?branch=master)](http://codecov.io/github/SheffieldML/GPyOpt?branch=master) [![Research software impact](http://depsy.org/api/package/pypi/GPyOpt/badge.svg)](http://depsy.org/package/python/GPyOpt)

### Citation

` @Misc{gpyopt2016, author = {The GPyOpt authors}, title = {{GPyOpt}: A Bayesian Optimization framework in python}, howpublished = {\url{http://github.com/SheffieldML/GPyOpt}}, year = {2016} } `

## Getting started

### Installing with pip

The simplest way to install GPyOpt is using pip. ubuntu users can do:

`bash sudo apt-get install python-pip pip install gpyopt `

If you’d like to install from source, or want to contribute to the project (e.g. by sending pull requests via github), read on. Clone the repository in GitHub and add it to your $PYTHONPATH.

`bash git clone https://github.com/SheffieldML/GPyOpt.git cd GPyOpt python setup.py develop `

## Dependencies:

  • GPy

  • paramz

  • numpy

  • scipy

  • matplotlib

  • DIRECT (optional)

  • cma (optional)

  • pyDOE (optional)

  • sobol_seq (optional)

You can install dependencies by running: ` pip install -r requirements.txt `

## Funding Acknowledgements

Keywords: machine-learning gaussian-processes kernels optimization Platform: UNKNOWN Classifier: License :: OSI Approved :: BSD License Classifier: Natural Language :: English Classifier: Operating System :: MacOS :: MacOS X Classifier: Operating System :: Microsoft :: Windows Classifier: Operating System :: POSIX :: Linux Classifier: Programming Language :: Python :: 2.7 Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence Description-Content-Type: text/markdown Provides-Extra: optimizer Provides-Extra: docs

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GPyOpt-1.2.6.tar.gz (56.8 kB view details)

Uploaded Source

File details

Details for the file GPyOpt-1.2.6.tar.gz.

File metadata

  • Download URL: GPyOpt-1.2.6.tar.gz
  • Upload date:
  • Size: 56.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.7

File hashes

Hashes for GPyOpt-1.2.6.tar.gz
Algorithm Hash digest
SHA256 e714daa035bb529a6db23c53665a762a4ab3456b9329c19ad3b03983f94c9b2a
MD5 81f8a1c92fdea5a9b2019f4ca2e384ae
BLAKE2b-256 52be669d505416d7e465b2aef7df3b58d590f56468c4f7dc50c91fe91b8a78d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page