Skip to main content

GRS processor for atmospheric correction of high-spatial resolution and multispectral satellite images

Project description

Installation

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system.

Download the LUT files

click on grsdata to download and save in your desired path (your_GRSDATA_PATH)

Installation with conda environment

conda activate "name of your conda env"

Python >= 3.9 is recommended, example:

conda create python=3.10 -n grs_v2
conda activate grs_v2

Then, install python dependencies:

conda install -c conda-forge eoreader cdsapi netCDF4 docopt xmltodict numba

Set the config.yml file:

path:
  grsdata: your_GRSDATA_PATH

Finally, install grs with:

pip install .

Testing

After installation, you can type:

grs -h

You should see something like:

Executable to process Sentinel-2 L1C images for aquatic environment

Usage:
  grs <input_file> [--cams_file file] [-o <ofile>] [--odir <odir>] [--resolution res] [--scale_aot factor]   [--levname <lev>] [--no_clobber] [--allpixels] [--surfwater file] [--dem_file file] [--snap_compliant]
  grs -h | --help
  grs -v | --version

Options:
  -h --help        Show this screen.
  -v --version     Show version.

  <input_file>     Input file to be processed

  --cams_file file     Absolute path of the CAMS file to be used (mandatory)

  -o ofile         Full (absolute or relative) path to output L2 image.
  --odir odir      Ouput directory [default: ./]
  --levname lev    Level naming used for output product [default: L2Agrs]
  --no_clobber     Do not process <input_file> if <output_file> already exists.
  --resolution=res  spatial resolution of the scene pixels
  --allpixels      force to process all pixels whatever they are masked (cloud, vegetation...) or not
  --surfwater file  Absolute path of the surfwater geotiff file to be used
  --dem_file file  Absolute path of the DEM geotiff file (already subset for the S2 tile)
  --scale_aot factor scaling factor applied to CAMS aod550 raster
                    [default: 1]
  --opac_model name  Force the aerosol model (OPAC) to be 'name'
                    (choice: ['ARCT_rh70', 'COAV_rh70', 'DESE_rh70',
                                'MACL_rh70', 'URBA_rh70'])
  --snap_compliant  Export output to netcdf aligned with "beam" for ESA SNAP software

  Example:
      grs /data/satellite/S2/L1C/S2B_MSIL1C_20220731T103629_N0400_R008_T31TFJ_20220731T124834.SAFE --cams_file /data/satellite/S2/cnes/CAMS/2022-07-31-cams-global-atmospheric-composition-forecasts.nc --resolution 60
  For CNES datalake:
      grs /work/datalake/S2-L1C/31TFJ/2023/06/16/S2B_MSIL1C_20230616T103629_N0509_R008_T31TFJ_20230616T111826.SAFE --cams_file /work/datalake/watcal/ECMWF/CAMS/2023/06/16/2023-06-16-cams-global-atmospheric-composition-forecasts.nc --odir /work/datalake/watcal/test --resolution 20 --dem_file /work/datalake/static_aux/MNT/COP-DEM_GLO-30-DGED_S2_tiles/COP-DEM_GLO-30-DGED_31TFJ.tif

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GRSprocessor-2.1.6.tar.gz (2.2 MB view details)

Uploaded Source

Built Distribution

GRSprocessor-2.1.6-py3-none-any.whl (2.2 MB view details)

Uploaded Python 3

File details

Details for the file GRSprocessor-2.1.6.tar.gz.

File metadata

  • Download URL: GRSprocessor-2.1.6.tar.gz
  • Upload date:
  • Size: 2.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.15

File hashes

Hashes for GRSprocessor-2.1.6.tar.gz
Algorithm Hash digest
SHA256 27446682cac0fea22f2be91c07f13bb6e4b5c1735a2af12593d90cf7f6cde0d2
MD5 aafd033271d2d8f76322750276d0069f
BLAKE2b-256 d79d59b81f88491ab8c2edbbc8e85e0da94a2b751abf6c5e5804111d3854bf51

See more details on using hashes here.

File details

Details for the file GRSprocessor-2.1.6-py3-none-any.whl.

File metadata

File hashes

Hashes for GRSprocessor-2.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 4f536b22d759df85b53d6e32af33dc8dd253c801a41dd4992171a16d5c4d52c5
MD5 7df3bdd236382070d55709cc9425cb73
BLAKE2b-256 ebf042ea377db39ff0889ecd4709ce458d8fb886113603199c0efde91fdf74da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page