Skip to main content

No project description provided

Project description

GSG: A generative self-supervised graph learning framework for spatial transcriptomics

GitHub Repo stars GitHub forks GitHub watchers


Overview

GSG takes ST data as input and outputs,its spatially coherent graph representation learning. The ST data contain two components: gene expression and spatial location information. The gene expression of a spot is initially reduced by principal component analysis (PCA) or initial extraction of highly variable genes (HVGs) as the initial spot features, which are used as nodes in the graph. Then, an adjacency of the graph is constructed based on the location information. Specifically, the location information is used to calculate the relative distance matrix among the spots. According to the biological assumption that cells influence their neighbours according to the diffusion principle, we choose a certain distance threshold to generate a 0-1 adjacency matrix for the graph. To calculate the representation learning of the graph, we introduced a self-supervised masked graph autoencoder. GSG selects a random number of nodes and masks their initial node features using a mask token [MASK]. Then, a GNN encoder is used to obtain the corrupted graph embedding. The selected nodes are remasked with another token (DMASK) in the extracted embedding and passed through a decoder composed of GNNs to reproduce the initial features. The decoder output is used to reconstruct the node feature of the masked node, using the scaled cosine error as the loss function. By using MASK, GSG enhances the utilization of features of neighbouring nodes for better representation of ST data. With generative self-supervised graph learning, GSG learns to encode a spot/cell node embedding that contains gene expression information, which is further used to visualize the data with a UMAP plot and for other downstream analyses34.

Requirements

You'll need to install the following packages in order to run the codes.

  • python==3.8
  • torch==1.9.0
  • cudnn==8.4
  • numpy==1.22.0
  • scanpy==1.8.2
  • anndata==0.8.0
  • dgl==0.9.0
  • pandas==1.2.4
  • scipy==1.7.3
  • scikit-learn==1.0.1
  • tqdm==4.64.1
  • matplotlib==3.5.3
  • tensorboardX==2.5.1
  • pyyaml==6.0.1
  • ploty==5.21.0
  • kaleido==0.2.1
  • igraph==0.9.8

Citation

Guan, R., Sun, H., Zhang, T., Wu, Z., Du, M., Liang, Y., ... & Xu, D. (2024). Generative Self-Supervised Graphs Enhance Integration, Imputation and Domains Identification of Spatial Transcriptomics.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GSG-0.5.9.tar.gz (29.8 kB view details)

Uploaded Source

Built Distribution

GSG-0.5.9-py3-none-any.whl (37.3 kB view details)

Uploaded Python 3

File details

Details for the file GSG-0.5.9.tar.gz.

File metadata

  • Download URL: GSG-0.5.9.tar.gz
  • Upload date:
  • Size: 29.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.8

File hashes

Hashes for GSG-0.5.9.tar.gz
Algorithm Hash digest
SHA256 a8c022ecb290dae750cd9c52f2b19a55a133d2e76c62161433ca78ed9ead8469
MD5 35b61acc1e052d35d7f77221ff61e933
BLAKE2b-256 88d43254b0214b2339b2fdb70524f260f9df3b95b795343bff785a94f91730e1

See more details on using hashes here.

File details

Details for the file GSG-0.5.9-py3-none-any.whl.

File metadata

  • Download URL: GSG-0.5.9-py3-none-any.whl
  • Upload date:
  • Size: 37.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.8

File hashes

Hashes for GSG-0.5.9-py3-none-any.whl
Algorithm Hash digest
SHA256 2aec9520f4c115afa6a01a844beb4bcc1511e2183e705ebed20f7e3dae9345a2
MD5 ae3498d0fc6c2ff40b68e4c6f8789837
BLAKE2b-256 9e1b549f262c0cccf1b02b44e18a20eab2078b495657a87347dc0d6eb2cfebdf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page