Skip to main content

Generative Topographic Mapping and Analysis Toolkit

Project description

Generative Topographic Mapping and Analysis Toolkit

Introduction

The Generative Topographic Mapping and Analysis Toolkit is a Python package designed for high-dimensional data analysis using Generative Topographic Mapping (GTM). This toolkit facilitates the visualization of high-dimensional datasets in lower-dimensional spaces, supports both forward and inverse mappings, and offers comprehensive tools for model fitting, dimensionality reduction, error analysis, and hyperparameter optimization. It is particularly useful for researchers and practitioners in machine learning, data science, and bioinformatics.

Features

  • GTM model fitting for dimensionality reduction and data visualization.
  • k-nearest neighbor normalized error (k3n-error) calculation for error analysis.
  • Cross-validation based hyperparameter optimization for GTM models.
  • Support for both forward analysis (regression) and inverse analysis.
  • Visualization tools for low-dimensional embeddings of high-dimensional data.

Installation

To install the GTMAnalysisToolkit, run the following command in your terminal:

pip install GTMAnalysisToolkit

Ensure you have Python 3.x installed on your system. This package depends on numpy, scipy, matplotlib, and sklearn, which will be automatically installed during the GTMAnalysisToolkit installation.

Quick Start

Here's a quick example to get you started with using the GTMAnalysisToolkit:

import matplotlib.figure as figure
import matplotlib.pyplot as plt
from GTMAnalysisToolkit import GTM
from sklearn.datasets import load_iris

# settings
shape_of_map = [10, 10]
shape_of_rbf_centers = [5, 5]
variance_of_rbfs = 4
lambda_in_em_algorithm = 0.001
number_of_iterations = 300
display_flag = 1

# load an iris dataset
iris = load_iris()
# input_dataset = pd.DataFrame(iris.data, columns=iris.feature_names)
input_dataset = iris.data
color = iris.target

# autoscaling
input_dataset = (input_dataset - input_dataset.mean(axis=0)) / input_dataset.std(axis=0, ddof=1)

# construct GTM model
model = GTM(shape_of_map, shape_of_rbf_centers, variance_of_rbfs, lambda_in_em_algorithm, number_of_iterations,
            display_flag)
model.fit(input_dataset)

if model.success_flag:
    # calculate of responsibilities
    responsibilities = model.responsibility(input_dataset)

    # plot the mean of responsibilities
    means = responsibilities.dot(model.map_grids)
    plt.figure(figsize=figure.figaspect(1))
    plt.scatter(means[:, 0], means[:, 1], c=color)
    plt.ylim(-1.1, 1.1)
    plt.xlim(-1.1, 1.1)
    plt.xlabel("z1 (mean)")
    plt.ylabel("z2 (mean)")
    plt.show()

    # plot the mode of responsibilities
    modes = model.map_grids[responsibilities.argmax(axis=1), :]
    plt.figure(figsize=figure.figaspect(1))
    plt.scatter(modes[:, 0], modes[:, 1], c=color)
    plt.ylim(-1.1, 1.1)
    plt.xlim(-1.1, 1.1)
    plt.xlabel("z1 (mode)")
    plt.ylabel("z2 (mode)")
    plt.show()

License

This project is licensed under the GNU General Public License version 3 (GPL-3.0) - see the LICENSE file for details.

Contributing

We welcome contributions to the GTMAnalysisToolkit! If you have suggestions or want to contribute code, please feel free to open an issue or pull request on our GitHub repository.

Contact

For questions or support, please contact Eng. Alberto Biscalchin at biscalchin.mau.se@gmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GTMAnalysisToolkit-1.0.2.tar.gz (26.0 kB view details)

Uploaded Source

Built Distribution

GTMAnalysisToolkit-1.0.2-py3-none-any.whl (25.3 kB view details)

Uploaded Python 3

File details

Details for the file GTMAnalysisToolkit-1.0.2.tar.gz.

File metadata

  • Download URL: GTMAnalysisToolkit-1.0.2.tar.gz
  • Upload date:
  • Size: 26.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for GTMAnalysisToolkit-1.0.2.tar.gz
Algorithm Hash digest
SHA256 2f723735c3ef9dd19a6e371cc2a1570635e6798735872ea35a0e5dbcd1916072
MD5 4e130844590a179092a631e0b391c3e9
BLAKE2b-256 9f8887264ee16bb07b636e06ae8ebe952aae2e950a0529445e25c3a8b211387c

See more details on using hashes here.

File details

Details for the file GTMAnalysisToolkit-1.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for GTMAnalysisToolkit-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 2f64b93a435da5ef12a1f3b0d55bfc8817efb5e8887bef1c5152c1905e377d88
MD5 396aa97be6c712bc34f6cb1df010d4e8
BLAKE2b-256 42cc55966bd55bc5c852ddeb153a2a37ef842bb9ebc587e3c48c6b6731bf8c98

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page