Skip to main content

Comprehensive genetic risk assessment

Project description

GenRisk

GenRisk is a package that implements different gene-based scoring schemes to analyze and find significant genes within a phenotype in a population

Requirements

Installation

Option 1: The latest release of GenRisk can be installed on python3+ with:

$ pip install genrisk

Option2: you can also install the package with the latest updates directly from GitHub <https://github.com/AldisiRana/GenRisk>_ with:

$ pip install git+https://github.com/AldisiRana/GenRisk.git

Usage

Score genes

This command calculate the gene-based scores for a given dataset.

It requires an annotated vcf (i.e: annotated with variant ID , ALT, Gene, and deleterious score, for more information check out the example in toy_example)

$ genrisk score-genes --annotated-vcf annotated_vcf_toy.vcf --temp-dir test/ --output-file test.tsv --weight-func beta --maf-threshold 0.01 --alt-col ALT --variant-col ID --af-col AF --del-col CADD --gene-col Gene
  • For further CLI options and parameters use --help

Calculate p-values

This function calculates the p-values across the genes between two given groups

$ genrisk find-association --scores-file toy_example/toy_dataset_scores --info-file toy_example/toy.pheno 
--cases-column trait1 --samples-column IID --test betareg --output-file toy_dataset_betareg.tsv --covariates age,sex
--adj-pval bonferroni
  • For further CLI options and parameters use --help

Visualize

Visualize manhatten plot and qqplot for the data.

$ genrisk visualize --pvals-file toy_example/toy_dataset_scores --info-file annotated_toy_dataset.vcf
--qq-output toy_example/toy_dataset_qqplot.jpg --manhattan-output toy_example/toy_dataset_manhattanplot.jpg 
  • For further CLI options and parameters use --help

Create model

Create a prediction model (classifier or regressor) with given dataset

$ genrisk create-model --data-file toy_example_regressor_features.tsv --model-type regressor --output-folder toy_regressor 
--test-size 0.25 --test --model-name toy_regressor --target-col trait1 --imbalanced --normalize
  • For further CLI options and parameters use --help

Test model

Evaluate a prediction model with a given dataset.

$ genrisk test-model --model-path regressor_model.pkl --input-file testing_dataset.tsv --model-type regressor 
--labels-col target --samples-col IID
  • For further CLI options and parameters use --help

Get PRS scores

This command aquires a PGS file (provided by the user or downloaded from pgscatalog) then calculates the PRS scores for dataset. Note: This command is interactive.

$ genrisk get-prs
  • For further CLI options and parameters use --help

Get GBRS

Calculate gene-based risk scores for individuals. If users do not have weights for calculation, they can provide a file with the phenotype and weights will be calculated.

$genrisk get-gbrs --scores-file scores_file.tsv --weights-file weights_file.tsv --weights-col zscore --sum
  • For further CLI options and parameters use --help

Contact

If you have any questions or problems with the tool or its installation please feel free to create an issue in the repository or contact me via email: aldisi.rana@gmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GenRisk-0.0.7.tar.gz (23.1 kB view details)

Uploaded Source

Built Distribution

GenRisk-0.0.7-py3-none-any.whl (26.7 kB view details)

Uploaded Python 3

File details

Details for the file GenRisk-0.0.7.tar.gz.

File metadata

  • Download URL: GenRisk-0.0.7.tar.gz
  • Upload date:
  • Size: 23.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.4 tqdm/4.59.0 importlib-metadata/3.10.0 keyring/22.3.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.8

File hashes

Hashes for GenRisk-0.0.7.tar.gz
Algorithm Hash digest
SHA256 8a92a3f06271dcf5aa1378d32e3ea845f946d6d9dfa70b683a8aa4c582a78dcd
MD5 23426c51091f18597a934abe5b2b5b6e
BLAKE2b-256 a3475d905cce2a5c93fde6ec9e925bd99ab40d5ea5a15da670d2bf6e4e58aee7

See more details on using hashes here.

File details

Details for the file GenRisk-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: GenRisk-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 26.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.4 tqdm/4.59.0 importlib-metadata/3.10.0 keyring/22.3.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.8

File hashes

Hashes for GenRisk-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 4b52bcdd5e218ed62ac4da6ed96eb0e33b5c288a4b43b35ee7f1f2b124771ec6
MD5 60d361f0af1bfbe85aac47bcfb853255
BLAKE2b-256 cd6af0776c33c97f94075e5eb2f6dc4d4bd4d3184427c87edf2c577315d7f8c0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page