Skip to main content

Comprehensive genetic risk assessment

Project description

GenRisk

GenRisk is a package that implements different gene-based scoring schemes to analyze and find significant genes within a phenotype in a population

Citation

Rana Aldisi, Emadeldin Hassanin, Sugirthan Sivalingam, Andreas Buness, Hannah Klinkhammer, Andreas Mayr, Holger Fröhlich, Peter Krawitz, Carlo Maj, GenRisk: a tool for comprehensive genetic risk modeling, Bioinformatics, Volume 38, Issue 9, 1 May 2022, Pages 2651–2653, https://doi.org/10.1093/bioinformatics/btac152

Requirements

Installation

Option 1: The latest release of GenRisk can be installed on python3+ with:

$ pip install genrisk

Option2: you can also install the package with the latest updates directly from GitHub <https://github.com/AldisiRana/GenRisk>_ with:

$ pip install git+https://github.com/AldisiRana/GenRisk.git

Usage

Score genes

This command calculate the gene-based scores for a given dataset.

It requires an annotated vcf (i.e: annotated with variant ID , ALT, Gene, and deleterious score, for more information check out the example in toy_example)

$ genrisk score-genes -a ../path/to/toy_vcf_data.vcf -o toy_genes_scores.tsv -t toy_vcf_scoring -v ID -f AF -g gene -l ALT -d RawScore
  • For further CLI options and parameters use --help

Calculate p-values

This function calculates the p-values across the genes between two given groups

$ genrisk find-association -s toy_genes_scores.tsv -i info.pheno -o linear_assoc_quan.tsv -t linear -c quan -a fdr_bh -v sex,age,bmi 
  • For further CLI options and parameters use --help

Visualize

Visualize manhatten plot and qqplot for the data.

$ genrisk visualize -p logit_assoc_binary.tsv -i genes_info_ref.txt -q logit_assoc_binary_qqplot.png -m logit_assoc_binary_manhattan.png --genescol-1 genes
  • For further CLI options and parameters use --help

Create model

Create a prediction model (classifier or regressor) with given dataset

$ genrisk create-model -d toy_dataset_feats.tsv -o quan_regression_model -n quan_regression_model --model-type regressor -l quan --normalize
  • For further CLI options and parameters use --help

Test model

Evaluate a prediction model with a given dataset.

$ genrisk test-model --model-path regressor_model.pkl --input-file testing_dataset.tsv --model-type regressor 
--labels-col target --samples-col IID
  • For further CLI options and parameters use --help

Get PRS scores

This command aquires a PGS file (provided by the user or downloaded from pgscatalog) then calculates the PRS scores for dataset. Note: This command is interactive.

$ genrisk get-prs
  • For further CLI options and parameters use --help

Get GBRS

Calculate gene-based risk scores for individuals. If users do not have weights for calculation, they can provide a file with the phenotype and weights will be calculated.

$genrisk get-gbrs --scores-file scores_file.tsv --weights-file weights_file.tsv --weights-col zscore --sum
  • For further CLI options and parameters use --help

Contact

If you have any questions or problems with the tool or its installation please feel free to create an issue in the repository or contact me via email: aldisi.rana@gmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GenRisk-0.1.2.tar.gz (23.6 kB view details)

Uploaded Source

Built Distribution

GenRisk-0.1.2-py3-none-any.whl (27.2 kB view details)

Uploaded Python 3

File details

Details for the file GenRisk-0.1.2.tar.gz.

File metadata

  • Download URL: GenRisk-0.1.2.tar.gz
  • Upload date:
  • Size: 23.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.4 tqdm/4.59.0 importlib-metadata/3.10.0 keyring/22.3.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.8

File hashes

Hashes for GenRisk-0.1.2.tar.gz
Algorithm Hash digest
SHA256 473519eb050ca6a0c9f19e036fda04b5cdd42c430e20617b5452cf237ddf240e
MD5 b4023ae2fc7ab7bbaa3f847c8d59f6b1
BLAKE2b-256 5411bad34b5223a79f66b1eb01cfa3350d3900c97676f0d77ad61860c89ba1cd

See more details on using hashes here.

File details

Details for the file GenRisk-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: GenRisk-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 27.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.4 tqdm/4.59.0 importlib-metadata/3.10.0 keyring/22.3.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.8

File hashes

Hashes for GenRisk-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 c4478f5fc2c1178e029302df18cce5106f4d124d248a0bfdc0104b89846ab23f
MD5 000ae8ef97af80afa683f0f51065c0e4
BLAKE2b-256 024fb2da4cb4f30da03820cf7152b6322349aecda8a93c0cbd21cef5e76e5a44

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page