Skip to main content

Comprehensive genetic risk assessment

Project description

GenRisk

GenRisk is a package that implements different gene-based scoring schemes to analyze and find significant genes within a phenotype in a population

Citation

Rana Aldisi, Emadeldin Hassanin, Sugirthan Sivalingam, Andreas Buness, Hannah Klinkhammer, Andreas Mayr, Holger Fröhlich, Peter Krawitz, Carlo Maj, GenRisk: a tool for comprehensive genetic risk modeling, Bioinformatics, Volume 38, Issue 9, 1 May 2022, Pages 2651–2653, https://doi.org/10.1093/bioinformatics/btac152

Requirements

Installation

Option 1: The latest release of GenRisk can be installed on python3+ with:

$ pip install genrisk

Option2: you can also install the package with the latest updates directly from GitHub <https://github.com/AldisiRana/GenRisk>_ with:

$ pip install git+https://github.com/AldisiRana/GenRisk.git

Usage

Score genes

This command calculate the gene-based scores for a given dataset.

It requires an annotated vcf (i.e: annotated with variant ID , ALT, Gene, and deleterious score, for more information check out the example in toy_example)

$ genrisk score-genes -a ../path/to/toy_vcf_data.vcf -o toy_genes_scores.tsv -t toy_vcf_scoring -v ID -f AF -g gene -l ALT -d RawScore
  • For further CLI options and parameters use --help

Calculate p-values

This function calculates the p-values across the genes between two given groups

$ genrisk find-association -s toy_genes_scores.tsv -i info.pheno -o linear_assoc_quan.tsv -t linear -c quan -a fdr_bh -v sex,age,bmi 
  • For further CLI options and parameters use --help

Visualize

Visualize manhatten plot and qqplot for the data.

$ genrisk visualize -p logit_assoc_binary.tsv -i genes_info_ref.txt -q logit_assoc_binary_qqplot.png -m logit_assoc_binary_manhattan.png --genescol-1 genes
  • For further CLI options and parameters use --help

Create model

Create a prediction model (classifier or regressor) with given dataset

$ genrisk create-model -d toy_dataset_feats.tsv -o quan_regression_model -n quan_regression_model --model-type regressor -l quan --normalize
  • For further CLI options and parameters use --help

Test model

Evaluate a prediction model with a given dataset.

$ genrisk test-model --model-path regressor_model.pkl --input-file testing_dataset.tsv --model-type regressor 
--labels-col target --samples-col IID
  • For further CLI options and parameters use --help

Get PRS scores

This command aquires a PGS file (provided by the user or downloaded from pgscatalog) then calculates the PRS scores for dataset. Note: This command is interactive.

$ genrisk get-prs
  • For further CLI options and parameters use --help

Get GBRS

Calculate gene-based risk scores for individuals. If users do not have weights for calculation, they can provide a file with the phenotype and weights will be calculated.

$genrisk get-gbrs --scores-file scores_file.tsv --weights-file weights_file.tsv --weights-col zscore --sum
  • For further CLI options and parameters use --help

Contact

If you have any questions or problems with the tool or its installation please feel free to create an issue in the repository or contact me via email: aldisi.rana@gmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GenRisk-0.2.0.tar.gz (24.0 kB view details)

Uploaded Source

Built Distribution

GenRisk-0.2.0-py3-none-any.whl (27.6 kB view details)

Uploaded Python 3

File details

Details for the file GenRisk-0.2.0.tar.gz.

File metadata

  • Download URL: GenRisk-0.2.0.tar.gz
  • Upload date:
  • Size: 24.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.4 tqdm/4.59.0 importlib-metadata/3.10.0 keyring/22.3.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.8

File hashes

Hashes for GenRisk-0.2.0.tar.gz
Algorithm Hash digest
SHA256 564b0b34901b91ef1b9a399f1230e3ff013059aa7231f3424fd79d15fb3f58ad
MD5 c10d647a7772dd29a7af763de08731f6
BLAKE2b-256 3058e1d0ea28916927e6150a76451e3bd316ce7c6e8a22c9d314af776db29086

See more details on using hashes here.

File details

Details for the file GenRisk-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: GenRisk-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 27.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.4 tqdm/4.59.0 importlib-metadata/3.10.0 keyring/22.3.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.8

File hashes

Hashes for GenRisk-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 40e9f5db130df4ef1e07b4671e34226eaf83eb05907fa4e855f8b7cd0b24c46d
MD5 fc0c147b85cc24c6d24807c1ad484cf5
BLAKE2b-256 f33eeb1dadddf27c6e1c2676965ebce278cbea3ea11298cd4c891f5e7d334838

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page