Skip to main content

Feature Selection with Genetic Algorithm

Project description

GeneticAlgorithmFeatureSelection

Feature Selection with Genetic Algorithm published in pypi.

Installation

pip install GeneticAlgorithmFeatureSelection

Example

The original example code can be found in test.py.

from sklearn.datasets import make_classification
import pandas as pd
from genetic_algoirthm.GA import GenticAlgorithmFeatureSelection

Define the sample classification dataset

x, y = make_classification(n_features=100, n_samples=2500)

input data must be pandas dataframe. we split target and features.

columns = [f'f_{i}' for i in range(1, 101)]
features = pd.DataFrame(x, columns=columns)
target = pd.DataFrame(y, columns=['target'])

run feature selection

 GA = GenticAlgorithmFeatureSelection(features=features, target=target, population_size=100, elite_rate=0.5,
                                      fitness_alpha=0.55, tourn_size=25, no_generation=50)
 
 GA.run()

see history

history = GA.history

for generation, detail in history.items():
    print(f'Generation :{generation}')
    print(f'best score: {detail["best_score"]}')
    print(f'features: {detail["selected_features"]}')

find best score and features in last generation

print(f'best score last generation :{GA.best_score}')
print(f'feature selected in last generation: {GA.selected_features}')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

File details

Details for the file GeneticAlgorithmFeaturesSelection-0.0.3.tar.gz.

File metadata

File hashes

Hashes for GeneticAlgorithmFeaturesSelection-0.0.3.tar.gz
Algorithm Hash digest
SHA256 fc0f5aa8fff89e2d59f05b07c5f994bb8adf8ba0d41bee79ce6c1463f0d254e0
MD5 fb785ed2152f9be007b266766d443abf
BLAKE2b-256 5af7de1e33fea8ef894c444a1d0283d595cacf40a941354a44819a17e25b2cce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page