Skip to main content

地址标准化

Project description

Geocoding

  • 该模块用于将不规范(或者连续)的文本地址进行尽可能的标准化, 以及对两个地址进行相似度的计算

  • 该模块为 IceMimosa/geocoding 项目的Python封装,原项目为Kotlin开发

  • 为方便使用Python方法调用,这里使用Python的jpype模块将 IceMimosa/geocoding 进行封装,因此该模块需要Java环境的支持(需要添加JAVA_HOME等环境变量)

  • 安装命令 pip install GeocodingCHN

地址标准化

Geocoding.normalizing(address)

  • address: 文本地址
from GeocodingCHN import Geocoding

text =  '山东青岛李沧区延川路116号绿城城园东区7号楼2单元802户'

address_nor = Geocoding.normalizing(text)

print(address_nor)

Address(

	provinceId=370000000000, province=山东省, 

	cityId=370200000000, city=青岛市, 

	districtId=370213000000, district=李沧区, 

	streetId=0, street=, 

	townId=0, town=, 

	villageId=0, village=, 

	road=延川路, 

	roadNum=116号, 

	buildingNum=7号楼2单元802户, 

	text=绿城城园东区

)

地址相似度计算

Geocoding.similarityWithResult(Address1, Address2)

  • Address1: 地址1, 由 Geocoding.normalizing 方法返回的 Address 类

  • Address2: 地址2, 由 Geocoding.normalizing 方法返回的 Address 类

from GeocodingCHN import Geocoding

text1 = '山东青岛李沧区延川路116号绿城城园东区7号楼2单元802户'

text2 = '山东青岛李沧区延川路绿城城园东区7-2-802'

Address_1 = Geocoding.normalizing(text1)

Address_2 = Geocoding.normalizing(text2)

similar = Geocoding.similarityWithResult(Address_1, Address_2)

print(similar)

0.9473309334313418

添加自定义地址

Geocoding.addRegionEntry(Id, parentId, name, RegionType, alias='')

  • Id: 地址的ID

  • parentId: 地址的父ID, 必须存在

  • name: 地址的名称

  • RegionType: RegionType,地址类型

  • alias: 地址的别名, default=''

  • return: bool

from GeocodingCHN import Geocoding

Geocoding.addRegionEntry(1, 321200000000, "A街道", Geocoding.RegionType.Street)

test_address = Geocoding.normalizing("江苏泰州A街道")

Address(

	provinceId=320000000000, province=江苏省, 

	cityId=321200000000, city=泰州市, 

	districtId=321200000000, district=泰州市, 

	streetId=1, street=A街道, 

	townId=0, town=, 

	villageId=0, village=, 

	road=, 

	roadNum=, 

	buildingNum=, 

	text=

)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GeocodingCHN-1.4.0.tar.gz (11.1 MB view details)

Uploaded Source

Built Distribution

GeocodingCHN-1.4.0-py3-none-any.whl (11.1 MB view details)

Uploaded Python 3

File details

Details for the file GeocodingCHN-1.4.0.tar.gz.

File metadata

  • Download URL: GeocodingCHN-1.4.0.tar.gz
  • Upload date:
  • Size: 11.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for GeocodingCHN-1.4.0.tar.gz
Algorithm Hash digest
SHA256 212738953ec8db710f511d085784b38aea4c14e4a4f5a7b1c9f66f1de56caf13
MD5 d9a06063a76146841df7f249e2bf3704
BLAKE2b-256 d97e0191b4d93e7a3d4817dcd71aaaed4cc5fd7bbb8eee13d33010e8d9eaa1c7

See more details on using hashes here.

File details

Details for the file GeocodingCHN-1.4.0-py3-none-any.whl.

File metadata

  • Download URL: GeocodingCHN-1.4.0-py3-none-any.whl
  • Upload date:
  • Size: 11.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for GeocodingCHN-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ab0c82358d807e07fe3089f70234c3dd6c18b3537725516e77ee4284e9b8eb51
MD5 9ddfed58db9225f5644a53c712fbf536
BLAKE2b-256 6b72cf4ce915b6c6153b3c76b6a8ea713f1a71c09124bb38566f7bd56cb45090

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page