地址标准化
Project description
Geocoding
- 该模块用于将不规范(或者连续)的文本地址进行尽可能的标准化, 以及对两个地址进行相似度的计算
- 该模块为 bitlap/geocoding 项目的Python封装,原项目为Kotlin开发
- 为方便使用Python方法调用,这里使用Python的
jpype
模块将 bitlap/geocoding 进行封装,因此该模块需要Java环境的支持(需要添加JAVA_HOME等环境变量) GeocodingCHN
重新加载功能在Windows平台上可能会遇到错误,参考Jpype Changelog 1.2.0 - 2020-11-29 更新信息。- 安装命令
pip install GeocodingCHN
更新信息:
1.4.5
- 修复
MatchedResult
无法解析空结果的问题
1.4.4
- 修复无法创建
Address
实例的问题
1.4.3
- 添加
save
方法用于生成自定义的dat字典文件 - 添加
match
方法用于深度优先匹配符合输入的地址信息 - 添加
analyze
方法用于地址切分
1.4.2
修复 无法添加自定义地址问题,并更新jar包至1.3.1
1.4.1
-
GeocodingCHN.Geocoding
新增参数设定(为适配org.bitlap.geocoding.GeocodingX
类)- 新增
data_class_path
参数,支持自定义地址文件路径,要求该路径为文件绝对路径,默认使用内置地址core/region.dat
- 新增
strict
参数,默认False
。当发现没有省和市,且匹配的父项数量等于1时,能成功匹配。True
: 严格模式,当发现没有省和市,且匹配的父项数量大于1时,返回None
False
: 非严格模式,当发现没有省和市,且匹配的父项数量大于1时,匹配随机一项省和市
- 新增
jvm_path
,允许设置JVM路径,但要求该路径为文件绝对路径
- 新增
-
addRegionEntry
方法新增replace
参数,表示是否替换旧地址,默认为True
其他更新:
- 区分
similarityWithResult
与similarity
方法,similarityWithResult
返回MatchedResult类型结果,similarity
返回float类型结果 - 封装分词方法
segment
GeocodingCHN.Geocoding
from GeocodingCHN import Geocoding
geocoding = Geocoding(data_class_path="core/region.dat",
strict= False,
jvm_path= None)
- data_class_path : 自定义地址文件路径
- strict : 模式设置
- jvm_path : JVM路径
GeocodingCHN.Geocoding.normalizing
提供地址标准化
normalizing(address) -> Address
- address: 文本地址
from GeocodingCHN import Geocoding
geocoding = Geocoding()
text = '山东青岛李沧区延川路116号绿城城园东区7号楼2单元802户'
address_nor = geocoding.normalizing(text)
print(address_nor)
Address(
provinceId=370000000000, province=山东省,
cityId=370200000000, city=青岛市,
districtId=370213000000, district=李沧区,
streetId=0, street=,
townId=0, town=,
villageId=0, village=,
road=延川路,
roadNum=116号,
buildingNum=7号楼2单元802户,
text=绿城城园东区
)
GeocodingCHN.Geocoding.similarityWithResult
地址相似度计算,返回详细结果
similarityWithResult(Address1:Address, Address2:Address) -> MatchedResult
- Address1: 地址1, 由 normalizing 方法返回的 Address 类
- Address2: 地址2, 由 normalizing 方法返回的 Address 类
from GeocodingCHN import Geocoding
geocoding = Geocoding()
text1 = '山东青岛李沧区延川路116号绿城城园东区7号楼2单元802户'
text2 = '山东青岛李沧区延川路绿城城园东区7-2-802'
Address_1 = geocoding.normalizing(text1)
Address_2 = geocoding.normalizing(text2)
print(geocoding.similarityWithResult(Address_1, Address_2))
MatchedResult(
doc1=Document(terms=[Term(延川路), Term(116号), Term(7), Term(2), Term(802), Term(绿城), Term(城), Term(园), Term(东区)], town=None, village=None, road=Term(延川路), roadNum=Term(116号), roadNumValue=116),
doc2=Document(terms=[Term(延川路), Term(7), Term(2), Term(802), Term(绿城), Term(城), Term(园), Term(东区)], town=None, village=None, road=Term(延川路), roadNum=None, roadNumValue=0),
terms=['MatchedTerm(Term(延川路), coord=-1.0, density=-1.0, boost=2.0, tfidf=8.0)', 'MatchedTerm(Term(7), coord=-1.0, density=-1.0, boost=1.0, tfidf=2.0)', 'MatchedTerm(Term(2), coord=-1.0, density=-1.0, boost=1.0, tfidf=2.0)', 'MatchedTerm(Term(802), coord=-1.0, density=-1.0, boost=1.0, tfidf=2.0)', 'MatchedTerm(Term(绿城), coord=1.0, density=1.0, boost=1.0, tfidf=4.0)', 'MatchedTerm(Term(城), coord=1.0, density=1.0, boost=1.0, tfidf=4.0)', 'MatchedTerm(Term(园), coord=1.0, density=1.0, boost=1.0, tfidf=4.0)', 'MatchedTerm(Term(东区), coord=1.0, density=1.0, boost=1.0, tfidf=4.0)'],
similarity=0.9473309334313418
)
GeocodingCHN.Geocoding.similarity
地址相似度计算
similarityWithResult(Address1:[Address, str], Address2:[Address, str])
- Address1: 地址1, Address类 或 文本
- Address2: 地址2, Address类 或 文本
from GeocodingCHN import Geocoding
geocoding = Geocoding()
text1 = '山东青岛李沧区延川路116号绿城城园东区7号楼2单元802户'
text2 = '山东青岛李沧区延川路绿城城园东区7-2-802'
Address_1 = geocoding.normalizing(text1)
Address_2 = geocoding.normalizing(text2)
print(geocoding.similarity(Address_1, Address_2))
0.9473309334313418
GeocodingCHN.Geocoding.addRegionEntry
添加自定义地址
addRegionEntry(Id, parentId, name, RegionType, alias='', replace=True) -> bool
- Id: 地址的ID
- parentId: 地址的父ID, 必须存在
- name: 地址的名称
- RegionType: RegionType,地址类型
- alias: 地址的别名, default=''
- replace: 是否替换旧地址, default=True
from GeocodingCHN import Geocoding
geocoding = Geocoding()
geocoding.addRegionEntry(1, 321200000000, "A街道", geocoding.RegionType.Street)
address_nor = geocoding.normalizing("江苏泰州A街道")
print(address_nor)
Address(
provinceId=320000000000, province=江苏省,
cityId=321200000000, city=泰州市,
districtId=321200000000, district=泰州市,
streetId=1, street=A街道,
townId=0, town=,
villageId=0, village=,
road=,
roadNum=,
buildingNum=,
text=
)
GeocodingCHN.Geocoding.segment
分词
segment(text: str, seg_type: str = 'ik') -> list
- text: 输入
- seg_type: 支持 ['ik', 'simple', 'smart', 'word'],default = 'ik'
from GeocodingCHN import Geocoding
geocoding = Geocoding()
text = '山东青岛李沧区延川路绿城城园东区7-2-802'
print(geocoding.segment(text))
['山东', '青岛', '李沧区', '延川路', '绿城', '城', '园', '东区', '7-2-802']
感谢
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
GeocodingCHN-1.4.5.tar.gz
(9.1 MB
view details)
Built Distribution
File details
Details for the file GeocodingCHN-1.4.5.tar.gz
.
File metadata
- Download URL: GeocodingCHN-1.4.5.tar.gz
- Upload date:
- Size: 9.1 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.9.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 507411dbf2192d059e258200fa5bff1a4300291c1d6172f011307967e89e11fd |
|
MD5 | b9cc0585ce6e8bd15367b32f2ab350b1 |
|
BLAKE2b-256 | 573cc4db51628e423ba39cb2f940e606922a021ebb63cb46f009a5049761e069 |
File details
Details for the file GeocodingCHN-1.4.5-py3-none-any.whl
.
File metadata
- Download URL: GeocodingCHN-1.4.5-py3-none-any.whl
- Upload date:
- Size: 9.1 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.9.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f4f304f879a9e069b20b197587c5d484cbbc784deb7b16e4c7f7ba5bca7ebdc6 |
|
MD5 | 93360a2294806087d585f3ea402262f5 |
|
BLAKE2b-256 | c349b43c0b497e3ba1378ef6712bc6996d539da489e74761b9b34f121709344d |