This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

Description

GetDist is a Python package for analysing Monte Carlo samples, including correlated samples from Markov Chain Monte Carlo (MCMC).

  • Point and click GUI - select chain files, view plots, marginalized constraints, LaTeX tables and more
  • Plotting library - make custom publication-ready 1D, 2D, 3D-scatter, triangle and other plots
  • Named parameters - simple handling of many parameters using parameter names, including LaTeX labels and prior bounds
  • Optimized Kernel Density Estimation - automated optimal bandwidth choice for 1D and 2D densities (Botev et al. Improved Sheather-Jones method), with boundary and bias correction
  • Convergence diagnostics - including correlation length and diagonalized Gelman-Rubin statistics
  • LaTeX tables for marginalized 1D constraints

See the Plot Gallery and tutorial and GetDist Documentation.

Getting Started

Install getdist using pip:

$ sudo pip install getdist

or from source files using:

$ sudo python setup.py install

You can test if things are working using the unit test by running:

$ python setup.py test

Check the dependencies listed in the next section are installed. You can then use the getdist module from your scripts, or use the GUI program GetDistGUI.py.

Dependencies

  • Python 2.7+ or 3.4+
  • matplotlib
  • scipy
  • PySide (optional, only needed for GUI)
  • Working LaTeX installation (for some plotting/table functions)

Python distributions like Anaconda have most of what you need (except for LaTeX). To install binary backages on Linux-like systems install pacakages py-matplotlib, py-scipy, py-pyside, texlive-latex-extra, texlive-fonts-recommended, dvipng. For example on a Mac using Python 2.7 from MacPorts:

sudo port install python27
sudo port select --set python python27
sudo port install py-matplotlib
sudo port install py-scipy
sudo port install py-pyside
sudo port install texlive-latex-extra
sudo port install texlive-fonts-recommended
sudo port install dvipng

If you don’t want to install dependencies locally, you can also use a pre-configured virtual environment.

Algorithm details

Details of kernel density estimation (KDE) algorithms and references are give in the GetDist Notes.

Samples file format

The GetDist GUI (and getdist.loadMCSamples function) read parameter sample/chain files in plain text format. In general there are a set of plain text files of the form:

xxx_1.txt
xxx_2.txt
...
xxx.paramnames
xxx.ranges

where “xxx” is some root file name.

The .txt files are separate chain files (there can also be just one xxx.txt file). Each row of each sample .txt file is in the format

weight like param1 param2 param3

The weight gives the number of samples (or importance weight) with these parameters. like gives -log(likelihood), and param1, param2… are the values of the parameters at the sample point. The first two columns can be 1 and 0 if they are not known or used.

The .paramnames file lists the names of the parameters, one per line, optionally followed by a LaTeX label. Names cannot include spaces, and if they end in “*” they are interpreted as derived (rather than MCMC) parameters, e.g.:

x1   x_1
y1   y_1
x2   x_2
xy*  x_1+y_1

The .ranges file gives hard bounds for the parameters, e.g.:

x1  -5 5
x2   0 N

Note that not all parameters need to be specified, and “N” can be used to denote that a particular upper or lower limit is unbounded. The ranges are used to determine densities and plot bounds if there are samples near the boundary; if there are no samples anywhere near the boundary the ranges have no affect on plot bounds, which are chosen appropriately for the range of the samples.

There can also optionally be a .properties.ini file, which can specify burn_removed=T to ensure no burn in is removed, or ignore_rows=x” to ignore the first fraction *x of the file rows (or if x > 1, the specified number of rows).

Loading samples

To load an MCSamples object from text files do:

from getdist import loadMCSamples
samples = loadMCSamples('/path/to/xxx', settings={'ignore_rows':0.3})

Here settings gives optional parameter settings for the analysis. ignore_rows is useful for MCMC chains where you want to discard some fraction from the start of each chain as burn in (use a number >1 to discard a fixed number of sample lines rather than a fraction). The MCSamples object can be passed to plot functions, or used to get many results. For example, to plot marginalized parameter densities for parameter names x1 and x2:

from getdist import plots
g = plots.getSinglePlotter()
g.plot_2d(samples, ['x1', 'x2'])

When you have many different chain files in the same directory, plotting can work directly with the root file names. For example to compare x and y constraints from two chains with root names xxx and yyy:

from getdist import plots
g = plots.getSinglePlotter(chain_dir='/path/to/', analysis_settings={'ignore_rows':0.3})
g.plot_2d(['xxx','yyy], ['x', 'y'])

MCSamples objects can also be constructed directly from numpy arrays in memory, see the example in the Plot Gallery.

GetDist script

If you have chain files on on disk, you can also quickly calculate convergence and marginalized statistics using the GetDist.py script:

usage: GetDist.py [-h] [–ignore_rows IGNORE_ROWS] [-V] [ini_file] [chain_root]

GetDist sample analyser

positional arguments:

ini_file .ini file with analysis settings (optional, if omitted uses defaults

chain_root Root name of chain to analyse (e.g. chains/test), required unless file_root specified in ini_file

optional arguments:
-h, --help show this help message and exit
--ignore_rows IGNORE_ROWS
 set initial fraction of chains to cut as burn in (fraction of total rows, or >1 number of rows); overrides any value in ini_file if set
--make_param_file MAKE_PARAM_FILE
 Produce a sample distparams.ini file that you can edit and use when running GetDist
-V, --version show program’s version number and exit

where ini_file is optionally a .ini file listing key=value parameter option values, and chain_root is the root file name of the chains. For example:

GetDist.py distparams.ini chains/test_chain

This produces a set of files containing parameter means and limits (.margestats), N-D likelihood contour boundaries and best-fit sample (.likestats), convergence diagnostics (.converge), parameter covariance and correlation (.covmat and .corr), and optionally various simple plotting scripts. If no ini_file is given, default settings are used. The ignore_rows option allows some of the start of each chain file to be removed as burn in.

To customize settings you can run:

GetDist.py --make_param_file distparams.ini

to produce the setting file distparams.ini, edit it, then run with your custom settings.

GetDist GUI

Run the GetDistGUI.py script to run the graphical user interface. This requires PySide, but will run on Windows, Linux and Mac. It allows you to open a folder of chain files, then easily select, open, plot and compare, as well as viewing standard GetDist outputs and tables. See the GUI Readme.

Using with CosmoMC

This GetDist package is general, but is mainly developed for analysing chains from the CosmoMC sampling program. No need to install this package separately if you have a full CosmoMC installation. Detailed help is available for plotting Planck chains and using CosmoMC parameter grids in the Readme.

Release History

Release History

0.2.6

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.5

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.4

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.3

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
GetDist-0.2.6.zip (161.8 kB) Copy SHA256 Checksum SHA256 Source Nov 8, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting