A small tool help assess and visualize the accuracy of a sequencing dataset, specifically for Oxford Nanopore Technologies (ONT) long-read sequencing.
Project description
Giraffe_View
Giraffe_View is designed to help assess and visualize the accuracy of a sequencing dataset, specifically for Oxford Nanopore Technologies (ONT) long-read sequencing including DNA and RNA data. There are four main functions to validate the read quality.
observe
calculates the observed read accuracy, mismatches porportion, and homopolymer identification.estimate
calculates the estimated read accuracy, which is equal to Quality Score.GC_bias
compares the relationship between GC content and read coverage.modi
perform statistics on the distribution of modification based on the bed file.
Install
To use this software, you will need to install additional dependencies including samtools, minimap2, seqkit, pysam, numpy, and pandas. You can install these dependencies using the following command.
# for data processing
pip install rpy2==3.0 pysam numpy pandas
conda install -c bioconda -c conda-forge samtools minimap2 seqkit bedtools -y
# for figure plotting
conda install -c R ggplot2 patchwork -y
General Usage
Giraffe View is run simply with fllowing commands:
python Giraffe_View.py --help
usage: Giraffe_view [-h] {observe,modi,GC_bias,estimate} ...
A tool to help you assess quality of your ONT data.
positional arguments:
{observe,modi,GC_bias,estimate}
observe Observed quality in accuracy, mismatch, and homopolymer
modi Average modification proportion of regions
GC_bias Relationship between GC content and depth
estimate Estimated read accuracy
optional arguments:
-h, --help show this help message and exit
The available sub-commands are:
observe
python Giraffe_View.py observe --help
usage: Giraffe_view observe [-h] --input <fastq> --ref <reference> [--cpu <number>]
optional arguments:
-h, --help show this help message and exit
--input <fastq> input reads
--ref <reference> input reference
--cpu <number> number of cpu (default:10)
fastq
- the raw fastq data, some filter steps will be conducted including short read ( < 200 bp) and low quality read ( < 7 ) removal.reference
- the reference file in fasta format.cpu
- the number of CPUs will be used during processing.
estimate
python Giraffe_View.py estimate --help
usage: Giraffe_view estimate [-h] --input <fastq> [--cpu <number>]
optional arguments:
-h, --help show this help message and exit
--input <fastq> input reads
--cpu <number> number of cpu (default:10)
GC_bias
python Giraffe_View.py GC_bias --help
usage: Giraffe_view GC_bias [-h] --ref <reference> --input <sam/bam> [--binsize]
optional arguments:
-h, --help show this help message and exit
--ref <reference> input reference file
--input <sam/bam> input bam/sam file
--binsize input bin size (default:1000)
reference
- the reference file in fasta format.sam
/bam
- the result of mapping in sam/bam file. If you have used the observe function to process your data, the resultingtmp.sort.bam
file can be used as the input.binsize
- the length of bin. A bin is the smallest unit to count the read coverage and GC content.
modi
python Giraffe_View.py modi --help
usage: Giraffe_view modi [-h] --input <bed> --ref <reference> [--cpu <number>]
optional arguments:
-h, --help show this help message and exit
--input <bed> input bed file
--ref <reference> input reference
--cpu <number> number of cpu (default:10)
-
bed
- a bed file with four columns (three columns for position, one for methylation proportion). Please use the tab ("\t") to gap the column instead of the space (" ").#chrom start end value chr1 81 83 0.8 chr1 21314 21315 0.3 chr1 32421 32422 0.85
-
reference
- a csv file with target regions.chr1,0,100000,1_0_100000 chr1,100000,200000,1_100000_200000
Workflow
graph TD
raw_data --> |Quality control| clean_data
raw_data --> |Basecall| modification_file
modification_file --> modification_distribution
clean_data --> Estimated_accuracy
clean_data --> |Reference| aligned_file
aligned_file --> Homopolymer_analysis
aligned_file --> GC_bias
aligned_file --> Observed_accuracy
Developing
- A example to show how to run
- polish the result figures
- run the homopolymer identification with multi-processes
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file Giraffe_View-0.0.4.tar.gz
.
File metadata
- Download URL: Giraffe_View-0.0.4.tar.gz
- Upload date:
- Size: 12.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 72ecbeb66e3359e226d1f3cd75393a6b166a751feffb2e4795438c3d2c6aca44 |
|
MD5 | 305fe53f36422d0803ffd98946fb0da7 |
|
BLAKE2b-256 | b5a311ed821a27ff2b1ceb1145e8df2086a21e348ec547ef2b348fb1b20b6ea3 |
File details
Details for the file Giraffe_View-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: Giraffe_View-0.0.4-py3-none-any.whl
- Upload date:
- Size: 14.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c38c63c38fd7c6e6f8f9a3c007415294b74fea3dfebbe16abdc575cb95e9132 |
|
MD5 | 7aa080b6884468c36d4ae99b51274ad6 |
|
BLAKE2b-256 | d196eb4c383bb315d7db1d534b428a3022eed103fc023dd2c5373b06ae929ba4 |