Skip to main content

A small tool help assess and visualize the accuracy of a sequencing dataset, specifically for Oxford Nanopore Technologies (ONT) long-read sequencing.

Project description

Giraffe_View

Giraffe_View is designed to help assess and visualize the accuracy of a sequencing dataset, specifically for Oxford Nanopore Technologies (ONT) long-read sequencing including DNA and RNA data. There are four main functions to validate the read quality.

  • observe calculates the observed read accuracy, mismatches porportion, and homopolymer identification.
  • estimate calculates the estimated read accuracy, which is equal to Quality Score.
  • GC_bias compares the relationship between GC content and read coverage.
  • modi perform statistics on the distribution of modification based on the bed file.

Install

To use this software, you will need to install additional dependencies including samtools, minimap2, seqkit, pysam, numpy, and pandas. You can install these dependencies using the following command.

# for data processing
pip install rpy2==3.0 pysam numpy pandas
conda install -c bioconda -c conda-forge samtools minimap2 seqkit bedtools -y

# for figure plotting
conda install -c R ggplot2 patchwork -y

General Usage

Giraffe View is run simply with fllowing commands:

python Giraffe_View.py --help
usage: Giraffe_view [-h] {observe,modi,GC_bias,estimate} ...

A tool to help you assess quality of your ONT data.

positional arguments:
  {observe,modi,GC_bias,estimate}
    observe             Observed quality in accuracy, mismatch, and homopolymer
    modi                Average modification proportion of regions
    GC_bias             Relationship between GC content and depth
    estimate            Estimated read accuracy

optional arguments:
  -h, --help            show this help message and exit

The available sub-commands are:

observe

python Giraffe_View.py observe --help
usage: Giraffe_view observe [-h] --input <fastq> --ref <reference> [--cpu <number>]

optional arguments:
  -h, --help         show this help message and exit
  --input <fastq>    input reads
  --ref <reference>  input reference
  --cpu <number>     number of cpu (default:10)
  • fastq - the raw fastq data, some filter steps will be conducted including short read ( < 200 bp) and low quality read ( < 7 ) removal.
  • reference - the reference file in fasta format.
  • cpu - the number of CPUs will be used during processing.

estimate

python Giraffe_View.py estimate --help
usage: Giraffe_view estimate [-h] --input <fastq> [--cpu <number>]

optional arguments:
  -h, --help       show this help message and exit
  --input <fastq>  input reads
  --cpu <number>   number of cpu (default:10)

GC_bias

python Giraffe_View.py GC_bias --help
usage: Giraffe_view GC_bias [-h] --ref <reference> --input <sam/bam> [--binsize]

optional arguments:
  -h, --help         show this help message and exit
  --ref <reference>  input reference file
  --input <sam/bam>  input bam/sam file
  --binsize          input bin size (default:1000)
  • reference - the reference file in fasta format.
  • sam / bam - the result of mapping in sam/bam file. If you have used the observe function to process your data, the resulting tmp.sort.bam file can be used as the input.
  • binsize - the length of bin. A bin is the smallest unit to count the read coverage and GC content.

modi

python Giraffe_View.py modi --help
usage: Giraffe_view modi [-h] --input <bed> --ref <reference> [--cpu <number>]

optional arguments:
  -h, --help         show this help message and exit
  --input <bed>      input bed file
  --ref <reference>  input reference
  --cpu <number>     number of cpu (default:10)
  • bed - a bed file with four columns (three columns for position, one for methylation proportion). Please use the tab ("\t") to gap the column instead of the space (" ").

    #chrom	start	end	value
    chr1	81	83	0.8
    chr1	21314	21315	0.3
    chr1	32421	32422	0.85
    
  • reference - a csv file with target regions.

    chr1,0,100000,1_0_100000
    chr1,100000,200000,1_100000_200000
    

Workflow

graph TD
raw_data --> |Quality control| clean_data
raw_data --> |Basecall| modification_file
modification_file --> modification_distribution
clean_data --> Estimated_accuracy
clean_data --> |Reference| aligned_file
aligned_file --> Homopolymer_analysis
aligned_file --> GC_bias 
aligned_file --> Observed_accuracy

Developing

  • A example to show how to run
  • polish the result figures
  • run the homopolymer identification with multi-processes

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Giraffe_View-0.0.4.tar.gz (12.3 kB view details)

Uploaded Source

Built Distribution

Giraffe_View-0.0.4-py3-none-any.whl (14.2 kB view details)

Uploaded Python 3

File details

Details for the file Giraffe_View-0.0.4.tar.gz.

File metadata

  • Download URL: Giraffe_View-0.0.4.tar.gz
  • Upload date:
  • Size: 12.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for Giraffe_View-0.0.4.tar.gz
Algorithm Hash digest
SHA256 72ecbeb66e3359e226d1f3cd75393a6b166a751feffb2e4795438c3d2c6aca44
MD5 305fe53f36422d0803ffd98946fb0da7
BLAKE2b-256 b5a311ed821a27ff2b1ceb1145e8df2086a21e348ec547ef2b348fb1b20b6ea3

See more details on using hashes here.

File details

Details for the file Giraffe_View-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: Giraffe_View-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 14.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for Giraffe_View-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 2c38c63c38fd7c6e6f8f9a3c007415294b74fea3dfebbe16abdc575cb95e9132
MD5 7aa080b6884468c36d4ae99b51274ad6
BLAKE2b-256 d196eb4c383bb315d7db1d534b428a3022eed103fc023dd2c5373b06ae929ba4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page