Skip to main content

A scikit-learn compatible library for graph kernels

Project description


Pypi Versions Coverage Status CircleCI Status

Documentation | Paper

GraKeL is a library that provides implementations of several well-established graph kernels. The library unifies these kernels into a common framework. Furthermore, it provides implementations of some frameworks that work on top of graph kernels. Specifically, GraKeL contains 16 kernels and 2 frameworks. The library is compatible with the scikit-learn pipeline allowing easy and fast integration inside machine learning algorithms.


In detail, the following kernels and frameworks are currently implemented:


To learn how to install and use GraKeL, and to find out more about the implemented kernels and frameworks, please read our documentation. To learn about the functionality of the library and about example applications, check out our examples in the examples/ directory and our tutorials in the tutorials/ directory.

In case you find a bug, please open an issue. To propose a new kernel, you can open a feature request.

Installation

The GraKeL library requires the following packages to be installed:

  • Python (>=2.7, >=3.5)
  • NumPy (>=1.8.2)
  • SciPy (>=0.13.3)
  • Cython (>=0.27.3)
  • cvxopt (>=1.2.0) [optional]
  • future (>=0.16.0) (for python 2.7)

To install the package, run:

$ pip install grakel

Running tests

To test the package, execute:

$ pytest

Running examples

$ cd examples
$ python shortest_path.py

Cite

If you use GraKeL in a scientific publication, please cite our paper (http://jmlr.org/papers/volume21/18-370/18-370.pdf):

@article{JMLR:v21:18-370,
  author  = {Giannis Siglidis and Giannis Nikolentzos and Stratis Limnios and Christos Giatsidis and Konstantinos Skianis and Michalis Vazirgiannis},
  title   = {GraKeL: A Graph Kernel Library in Python},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {54},
  pages   = {1-5}
}

License

GraKeL is distributed under the BSD 3-clause license. The library makes use of the C++ source code of BLISS (a tool for computing automorphism groups and canonical labelings of graphs) which is LGPL licensed. Futhermore, the cvxopt package (a software package for convex optimization) which is an optional dependency of GraKeL is GPL licensed.

Acknowledgements

We would like to thank @eddiebergman for modernizing our CI and extending our python support.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GraKeL-0.1.10.tar.gz (1.0 MB view details)

Uploaded Source

Built Distributions

GraKeL-0.1.10-cp311-cp311-win_amd64.whl (679.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

GraKeL-0.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

GraKeL-0.1.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

GraKeL-0.1.10-cp311-cp311-macosx_10_9_x86_64.whl (720.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

GraKeL-0.1.10-cp311-cp311-macosx_10_9_universal2.whl (1.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

GraKeL-0.1.10-cp310-cp310-win_amd64.whl (679.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

GraKeL-0.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

GraKeL-0.1.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

GraKeL-0.1.10-cp310-cp310-macosx_10_9_x86_64.whl (719.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

GraKeL-0.1.10-cp310-cp310-macosx_10_9_universal2.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

GraKeL-0.1.10-cp39-cp39-win_amd64.whl (679.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

GraKeL-0.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

GraKeL-0.1.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

GraKeL-0.1.10-cp39-cp39-macosx_10_9_x86_64.whl (719.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

GraKeL-0.1.10-cp39-cp39-macosx_10_9_universal2.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

GraKeL-0.1.10-cp38-cp38-win_amd64.whl (679.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

GraKeL-0.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

GraKeL-0.1.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

GraKeL-0.1.10-cp38-cp38-macosx_10_9_x86_64.whl (721.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

GraKeL-0.1.10-cp38-cp38-macosx_10_9_universal2.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

GraKeL-0.1.10-cp37-cp37m-win_amd64.whl (676.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

GraKeL-0.1.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

GraKeL-0.1.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

GraKeL-0.1.10-cp37-cp37m-macosx_10_9_x86_64.whl (717.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file GraKeL-0.1.10.tar.gz.

File metadata

  • Download URL: GraKeL-0.1.10.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for GraKeL-0.1.10.tar.gz
Algorithm Hash digest
SHA256 0c87f716d8cd69741cf1aa63a230a74c3a8957f8485b2a18689274934ef8fd51
MD5 6c01b0beb12255c6ed49c1ad9cd16819
BLAKE2b-256 7d8ae6b4d4bcb1e34c91248675984ee1ebb96e57a2254f955dfde8fd1da5043a

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: GraKeL-0.1.10-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 679.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for GraKeL-0.1.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a73f54c5c3d0a4c8b0967ef67ff12be286d06997b1ee365a531aeef1f632139b
MD5 739b6a5b31024163bfdadc8a37b25670
BLAKE2b-256 6b29714f7a3d09d3defaea6ef556bd8ea04abd2eb356479847cba459ef3bfe39

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0826b67750517e01c658dad4e068f71e92ae9384bcbbf34f156e698229bd262e
MD5 73d4b98195bd2e58bf695e167aff68ce
BLAKE2b-256 c99c4e727cf567187d31b8d0290c8eb2421bf387c7d72bb83b258779641356bd

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aed2fd06e793d8330667daebf9b93a5f776d6d45403b179d74e16df0168d3360
MD5 bb4e2c1cadaab522177cb878671ae40d
BLAKE2b-256 06a9e6da6ba79c7a961c4ef1007f67d4145fa52a1d4c9e29c018dda0f2ba5f22

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f66f171801c8a0133a0be540630c8424345502548a5279af481df3215bcced24
MD5 bb19d49cdf73417a63e9a991baa540bf
BLAKE2b-256 bd5a0f1fa0b532bd56dabdfce3aaacd0952aa74edfc4137b5b33d55d5fcf9323

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 10fa86a4b884ae9b873d2ca5fd55ec1cd9e138a5e2fceeeafaf3f1e3b3571c8d
MD5 2ebb5c1da61027a3586963fa80f3c6db
BLAKE2b-256 cf5954726f4b988d859c97b9017af639090904c2bef04dd288d99733fcc1489e

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: GraKeL-0.1.10-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 679.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for GraKeL-0.1.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e44a72c503967890ff4923654b9c87f1187ff63e217acd0852613ca4355c83d1
MD5 548079beaaf05a028eb06b0f0315b957
BLAKE2b-256 8bac62a02d45df0165312bdf022834fe97f8dc1a479c8c2a7daebfdb7282ba9d

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8012ac44fc779a1d89b7d903ac68d3ab72b333da91736016e1841c939744a471
MD5 adac5994b2679ae6a763e235581fc5a8
BLAKE2b-256 f794f1c66c73f3cea179a65e51bfd2567bd83990c68976c0d07cb6f39e6ee049

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d7afd00a1272a78e2f11df86f159e347dee212e0a18c02ed1a93dbdc0f9abad8
MD5 a19526990eaef9a69bc3562953a6fcd6
BLAKE2b-256 fd6d5cb7a1f5686895c5a8cff391f3d52ae43f95e2f34c4a6636f3124a688485

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e86dfa967d8ea7b22b0bd7d4a5bb49cc9849ef230811c31d9509087bf9bdfbd6
MD5 aa0bdb370af4ccba9884e3514900ef70
BLAKE2b-256 77ab93a4d0e41168afa832a8da0932a7d726f57cdca19082e7d76c8eef37d187

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 10e42a1d90f07da217c74b80ef663a081f12c36d2754f3245c965a4bb2b1bb14
MD5 f2329fc8bfe843442cf48c0917b232b0
BLAKE2b-256 02e360997210ba1726d7a321d90dd885e598835c554076de399cc2a85a88ef0f

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: GraKeL-0.1.10-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 679.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for GraKeL-0.1.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 10b2c378b99901b4091312360b00a10bb99d39c9d504d95ce120040bafad4328
MD5 bd5c61c77d7e10874caf3db24770af91
BLAKE2b-256 0d5aae0f69b31330c076e3d1fffba92c5b18173eebaa6432cf4c081bae6c094c

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 822ab90f1cf4402449c3ec03895a869f37217e9899b9e0b7a903b1f597b1a230
MD5 7ecf795079093dc5d62d5578380e2ed1
BLAKE2b-256 dd38598ee5e122fb35d31d071a049aab2ba88794c9f381013ab83a4ff58e9c0a

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b65f634b1ea26f87ea1cbb52bae054084c9baba81b1a7ead267e23ebfab9e282
MD5 7979b65e898ff153983258d97a2b73b7
BLAKE2b-256 0d299d5ce9128c4e1411a7997fafa30d3011b4897f485a54c81e0913feae5fb8

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 43378d431f07ad6a2db0a820957218aa40564f0730af3e451acba668556e77a2
MD5 09bdf3453410e44447b260dd858dc040
BLAKE2b-256 ec3be0e08a546544e74fdc06361e8f11242a9bdf9e288e7798c0a56edbfbcac8

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b4ab05c601bb3bedc8d7b5a54f7395bd998b5176a72acfad9ceebd61d8d0ee78
MD5 5df3eaaeb32558a794ecece396420262
BLAKE2b-256 732be6d27d79481649497f660b1c4325cb2833b11ccdc6af3cc91d49d03209d0

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: GraKeL-0.1.10-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 679.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for GraKeL-0.1.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 57bda9c718cc3672068f7a7ff4214691803282d01a7444df114ada76ad62dcd8
MD5 580f981659e6748eb02d61142c2ece3c
BLAKE2b-256 d7311eca6fdf1de1955661d368c69f93259ec2b72d9478cadb4df37c387c6d35

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8078fec6893dd189d78f86d9118cf364f090208bb5417151e459fdb66997a0eb
MD5 9902d116a22e7e5945e50d4cc636de6e
BLAKE2b-256 f2d734387e1f10b6f7e814806aa197f106d5e36f873ac82bbad15e2ffbabf06e

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9af0e56ece9616f0b26519a8c1bdd2242d34cecda432d71ea3493dcfc3544e82
MD5 560b45ce01a2ace2c1b1e0bc90f66500
BLAKE2b-256 cc313c3653b3b37275fbb5e6b223bbed45292c3f6008db8c772feef9e5ccbe20

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 589906c540486b8c11e2a5d9e70d5153b07fdd36917c275917e02c1f1c37e76e
MD5 e660203a244d43096efb8a42ac41d996
BLAKE2b-256 8de0653a1104627af64e93a65aa72219ba77d9f691226a5c3478585f41fc2412

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 bfd6c258feb0913add497fad970fbc798b22860e6613dd552d8efbf63a5a807e
MD5 ca06c48a7bfaee27086fe2817e3be757
BLAKE2b-256 89188db6d8f28da1710bba6c357957c81414173e5b809dc3e876491500bddf4f

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: GraKeL-0.1.10-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 676.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for GraKeL-0.1.10-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 459bc5bb3585233261c1c11964fe2a5b6030f4e2c95a46ab7793f5cd80368053
MD5 ddc7d7821fc1f6e0b4a6e455256dfbe7
BLAKE2b-256 b48be68cc0f09223bd217830227e0745a4d09128fab621fc245027652867e115

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 56dcb27beb7f40dd2fd47ebf22f871960442d3793bc172de6f8b0e6c7d83ca5d
MD5 70ded1ccc060a08ef2d281cd8b2749ba
BLAKE2b-256 4620c218adc957f4614b0a81d3cb2283b153d066d7a9be8b5d7f947330968ed8

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7e81b21fdb20eb4ee14a6f4bd2e305351f3780d66aa9c2d7a6ca326adc6eb6a2
MD5 f1371537d772bb4d428f922babb07d9f
BLAKE2b-256 b54d192161c429143e3866ce39b6a13344ac3e098d3c90e6ef56bc9c5da37738

See more details on using hashes here.

File details

Details for the file GraKeL-0.1.10-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for GraKeL-0.1.10-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9623c63f3ec85603ebadb1a2e0367a2611f197350882d9cf7b0d39a755d376aa
MD5 185e6ae08f02d16fb86b33fdfc9a4df1
BLAKE2b-256 7e85a2fe3217e449210fc5c6ba87863b684527bf99ce5063c63ae8ada1dc6419

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page