Skip to main content

Graph retrieval

Project description

GraphRetrieval

GraphRetrieval is a Python library designed for advanced text retrieval and knowledge graph querying. It supports various models and techniques to enable efficient and accurate information retrieval from large text corpora and knowledge bases.

Installation

pip install -e git+https://github.com/jayavibhavnk/GraphRetrieval.git#egg=GraphRetrieval

or

pip install GraphRetrieval

Usage Setting Up Environment Variables

Before using the library, set up the necessary environment variables for Neo4j and OpenAI:

import os

os.environ["NEO4J_URI"] = "add your Neo4j URI here"
os.environ["NEO4J_USERNAME"] = "add your Neo4j username here"
os.environ["NEO4J_PASSWORD"] = "add your Neo4j password here"
os.environ['OPENAI_API_KEY'] = "add your OpenAI API key here"

GraphRAG

GraphRAG is used to create and query graphs based on text documents.

Example

import GraphRetrieval
from GraphRetrieval import GraphRAG

grag = GraphRAG()
grag.create_graph_from_file('add file path here')

# Query using the default A* search
print(grag.queryLLM("Ask your query here")) 

# Switch to greedy search
grag.retrieval_model = "greedy"
print(grag.queryLLM("Ask your query here"))

KnowledgeRAG

KnowledgeRAG integrates with a knowledge graph and supports hybrid searches combining structured and unstructured data.

Example

from GraphRetrieval import KnowledgeRAG
from langchain_community.graphs import Neo4jGraph

graph = Neo4jGraph()
gr = KnowledgeRAG()

# Initialize graph
gr.init_graph(graph)

# Create the graph chain
gchain = gr.graphChain()

# Query the graph chain
print(gchain.invoke({"question": "Ask your query here"}))

# Hybrid search using Neo4j vector index
gr.init_neo4j_vector_index()
gr.hybrid = True
print(gchain.invoke({"question": "Ask your query here"}))

Ingesting Data into Graph

Ingest large text data into the knowledge graph.

text = "some large text here"

from langchain_text_splitters import CharacterTextSplitter

text_splitter = CharacterTextSplitter(
    separator="

",
    chunk_size=1000,
    chunk_overlap=200,
    length_function=len,
    is_separator_regex=False,
)

docs1 = text_splitter.create_documents([text])
docs = gr.generate_graph_from_text(docs1)
gr.ingest_data_into_graph(docs)

gr.init_neo4j_vector_index()
print(gchain.invoke({"question": "Ask your query here"}))

Hybrid Search with GraphRetrieval and Knowledge Base

Combine GraphRAG and KnowledgeRAG for hybrid search.

gr.vector_index = grag
gr.hybrid = True
print(gchain.invoke({"question": "Ask your query here"}))

Contributing

Contributions are welcome! Please submit a pull request or open an issue to discuss what you would like to change. License

This project is licensed under the MIT License. See the LICENSE file for details.

This README.md provides an overview of the GraphRetrieval library, installation instructions, and example usage scenarios, with the specified changes to the file path and environment variables sections.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graphretrieval-0.1.2.tar.gz (7.9 kB view details)

Uploaded Source

Built Distribution

GraphRetrieval-0.1.2-py3-none-any.whl (8.0 kB view details)

Uploaded Python 3

File details

Details for the file graphretrieval-0.1.2.tar.gz.

File metadata

  • Download URL: graphretrieval-0.1.2.tar.gz
  • Upload date:
  • Size: 7.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for graphretrieval-0.1.2.tar.gz
Algorithm Hash digest
SHA256 36653cd581eed9e65fe9656b71e77bc116b994f56ad95381bea4f4839f0f23c9
MD5 99c75393c2495f319aadf39746b11042
BLAKE2b-256 d10b0f1d776409ad8377671ae60564e16afa70e87644ce8c059146180bf8996b

See more details on using hashes here.

File details

Details for the file GraphRetrieval-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for GraphRetrieval-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 41cc3d4014e3969aca927d69767e6af4edf8e6ed130a7a3f28e5726ea5144f2a
MD5 5ffc38cc5a00b944f7b03842e26bc0ca
BLAKE2b-256 4503b232cafb78b861409d5c3095585181c266e64505bf97604d5c059340b1f9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page