Skip to main content

Graph retrieval

Project description

GraphRetrieval

GraphRetrieval is a Python library designed for advanced text retrieval and knowledge graph querying. It supports various models and techniques to enable efficient and accurate information retrieval from large text corpora and knowledge bases.

Installation

pip install -e git+https://github.com/jayavibhavnk/GraphRetrieval.git#egg=GraphRetrieval

or

pip install GraphRetrieval

Usage Setting Up Environment Variables

Before using the library, set up the necessary environment variables for Neo4j and OpenAI:

import os

os.environ["NEO4J_URI"] = "add your Neo4j URI here"
os.environ["NEO4J_USERNAME"] = "add your Neo4j username here"
os.environ["NEO4J_PASSWORD"] = "add your Neo4j password here"
os.environ['OPENAI_API_KEY'] = "add your OpenAI API key here"

GraphRAG

GraphRAG is used to create and query graphs based on text documents.

Example

import GraphRetrieval
from GraphRetrieval import GraphRAG

grag = GraphRAG()
grag.create_graph_from_file('add file path here')

# Query using the default A* search
print(grag.queryLLM("Ask your query here")) 

# Switch to greedy search
grag.retrieval_model = "greedy"
print(grag.queryLLM("Ask your query here"))

KnowledgeRAG

KnowledgeRAG integrates with a knowledge graph and supports hybrid searches combining structured and unstructured data.

Example

from GraphRetrieval import KnowledgeRAG
from langchain_community.graphs import Neo4jGraph

graph = Neo4jGraph()
gr = KnowledgeRAG()

# Initialize graph
gr.init_graph(graph)

# Create the graph chain
gchain = gr.graphChain()

# Query the graph chain
print(gchain.invoke({"question": "Ask your query here"}))

# Hybrid search using Neo4j vector index
gr.init_neo4j_vector_index()
gr.hybrid = True
print(gchain.invoke({"question": "Ask your query here"}))

Ingesting Data into Graph

Ingest large text data into the knowledge graph.

text = "enter text here"

from langchain_text_splitters import CharacterTextSplitter

text_splitter = CharacterTextSplitter(
    separator="

",
    chunk_size=1000,
    chunk_overlap=200,
    length_function=len,
    is_separator_regex=False,
)

docs1 = text_splitter.create_documents([text])
docs = gr.generate_graph_from_text(docs1)
gr.ingest_data_into_graph(docs)

gr.init_neo4j_vector_index()
print(gchain.invoke({"question": "Ask your query here"}))

Hybrid Search with GraphRetrieval and Knowledge Base

Combine GraphRAG and KnowledgeRAG for hybrid search.

gr.vector_index = grag
gr.hybrid = True
print(gchain.invoke({"question": "Ask your query here"}))

Image Graph RAG

Use directories of images for searching similar images.

image_graph_rag = ImageGraphRAG()
image_paths = image_graph_rag.create_graph_from_directory('/content/images')
similar_images = image_graph_rag.similarity_search('/content/images/car.jpg', k=5)

for doc in similar_images:
    print(doc.metadata["path"])
image_graph_rag.visualize_graph() # for graph visualization

Contributing

Contributions are welcome! Please submit a pull request or open an issue to discuss what you would like to change. License

This project is licensed under the MIT License. See the LICENSE file for details.

This README.md provides an overview of the GraphRetrieval library, installation instructions, and example usage scenarios, with the specified changes to the file path and environment variables sections.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graphretrieval-0.1.3.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

GraphRetrieval-0.1.3-py3-none-any.whl (8.8 kB view details)

Uploaded Python 3

File details

Details for the file graphretrieval-0.1.3.tar.gz.

File metadata

  • Download URL: graphretrieval-0.1.3.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for graphretrieval-0.1.3.tar.gz
Algorithm Hash digest
SHA256 b22d0a542395fcdb3613b9a51a6d2c0fe8b2d27ac3d5fda8ddb40d10bbd4939a
MD5 5856a5c17a574dbf30387ea93863110e
BLAKE2b-256 8d8c8ad17ac6445e0a7ceafcc1f2ee8388194b3485b47191b61bf4c21969bbb9

See more details on using hashes here.

File details

Details for the file GraphRetrieval-0.1.3-py3-none-any.whl.

File metadata

File hashes

Hashes for GraphRetrieval-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 16b33d89d5f0dc78d81b2bf1e862e91c6db729b248b5691564292930cd559530
MD5 5ae40ba3308aef81f422b3d9263d7936
BLAKE2b-256 7d75b453578d74d50322b3700f2e9084db8be92955e9cdc59330c343e3850458

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page