Heteroscedastic evolutionary bayesian optimisation
Project description
pip install HEBO
README
Bayesian optimsation library developped by Huawei Noahs Ark Decision Making and Reasoning (DMnR) lab. The winning submission to the NeurIPS 2020 Black-Box Optimisation Challenge.
Summary | Ablation |
---|---|
Results | Results |
Contributors
Alexander I. Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan Rhys Griffiths, Alexandre Max Maraval, Hao Jianye, Jun Wang, Jan Peters, Haitham Bou Ammar
Installation
python setup.py develop
Demo
import pandas as pd
import numpy as np
from hebo.design_space.design_space import DesignSpace
from hebo.optimizers.hebo import HEBO
def obj(params : pd.DataFrame) -> np.ndarray:
return ((params.values - 0.37)**2).sum(axis = 1).reshape(-1, 1)
space = DesignSpace().parse([{'name' : 'x', 'type' : 'num', 'lb' : -3, 'ub' : 3}])
opt = HEBO(space)
for i in range(5):
rec = opt.suggest(n_suggestions = 4)
opt.observe(rec, obj(rec))
print('After %d iterations, best obj is %.2f' % (i, opt.y.min()))
Auto Tuning via Sklearn Estimator
from sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score, mean_squared_error
from hebo.sklearn_tuner import sklearn_tuner
space_cfg = [
{'name' : 'max_depth', 'type' : 'int', 'lb' : 1, 'ub' : 20},
{'name' : 'min_samples_leaf', 'type' : 'num', 'lb' : 1e-4, 'ub' : 0.5},
{'name' : 'max_features', 'type' : 'cat', 'categories' : ['auto', 'sqrt', 'log2']},
{'name' : 'bootstrap', 'type' : 'bool'},
{'name' : 'min_impurity_decrease', 'type' : 'pow', 'lb' : 1e-4, 'ub' : 1.0},
]
X, y = load_boston(return_X_y = True)
result = sklearn_tuner(RandomForestRegressor, space_cfg, X, y, metric = r2_score, max_iter = 16)
Documentation
cd doc
make html
You can view the compiled documentation in doc/build/html/index.html
.
Test
pytest -v test/ --cov ./bo --cov-report term-missing --cov-config ./test/.coveragerc
Reproduce Experimental Results
- See
archived_submissions/hebo
, which is the exact submission that won the NeurIPS2020 Black-Box Optimsation Challenge. - Use
run_local.sh
in bbo_challenge_starter_kit to reproducebayesmark
experiments, you can just droparchived_submissions/hebo
to theexample_submissions
directory. - The
MACEBO
inbo.optimizers.mace
is the same optimiser, with same hyperparameters but a modified interface (bayesmark dependency removed).
Features
- Continuous, integer and categorical design parameters.
- Constrained and multi-objective optimsation.
- Contextual optimsation.
- Multiple surrogate models including GP, RF and BNN.
- Modular and flexible Bayesian Optimisation building blocks.
Cite Us
Cowen-Rivers, Alexander I., et al. "An Empirical Study of Assumptions in Bayesian Optimisation." arXiv preprint arXiv:2012.03826 (2021).
BibTex
@article{cowen2020empirical,
title={An Empirical Study of Assumptions in Bayesian Optimisation},
author={Cowen-Rivers, Alexander I and Lyu, Wenlong and Tutunov, Rasul and Wang, Zhi and Grosnit, Antoine and Griffiths, Ryan Rhys and Jianye, Hao and Wang, Jun and Ammar, Haitham Bou},
journal={arXiv preprint arXiv:2012.03826},
year={2020}
}
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
HEBO-0.3.0-py3-none-any.whl
(100.8 kB
view hashes)