A Hamming Encoder package
Project description
HammingEncoder
HammingEncoder is the source code for paper.
Installation
You can install HammingEncoder from PyPI:
pip install HammingEncoder
Usage
Here's how to use the HammingEncoder package:
Importing the package
from HammingEncoder import HammingEncoder
# Example data
sequences = [
['0', '1', '2', '3', '4', '5', '1', '6', '5', '1', '7', '4', '5', '8', '5'],
['0', '1', '4', '2', '3', '4', '5', '8', '5', '1', '7', '4', '5', '1', '5', '1', '5', '6', '5'],
['0', '1', '2', '3', '4', '5', '8', '5', '1', '5', '7', '5', '1', '8', '5', '1', '5', '1', '5', '1', '6', '4', '5'],
['0', '4', '2', '3', '5', '7', '5', '1', '5', '4', '6', '5', '1', '5', '4', '5'],
]
labels = [0, 1, 0, 1]
# Initialize the encoder
encoder = HammingEncoder(sequences, labels, gap_constrain=5, label_number=2, Preset_set_pattern_num=1024, device='cpu')
# Fit the model
encoder.fit(n_epochs=100, patience=2, batch_size=64)
# Transform the data
encoded_data = encoder.transform(sequences)
print("Encoded data:", encoded_data)
# test
acc = encoder.test(sequences, labels)
print("Accuracy:", acc)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
hammingencoder-0.1.8.tar.gz
(6.8 kB
view details)
Built Distribution
File details
Details for the file hammingencoder-0.1.8.tar.gz
.
File metadata
- Download URL: hammingencoder-0.1.8.tar.gz
- Upload date:
- Size: 6.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
d08fd2e29ac607731de4294a27aee66be4c126bc4c448733795f423f61c47b02
|
|
MD5 |
05c234e8ce4e00c2f71138bedcef80ed
|
|
BLAKE2b-256 |
feaebca6b4da8092a2dc59ae7b5d67319aae28a044346a8d7f29ad08b0c4760b
|
File details
Details for the file HammingEncoder-0.1.8-py3-none-any.whl
.
File metadata
- Download URL: HammingEncoder-0.1.8-py3-none-any.whl
- Upload date:
- Size: 8.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
023eed049abee5ece2da40bf6dbfa8ff08056065b78cb9a3355225ac81162b4d
|
|
MD5 |
c06495f35a82012b76f3d66e45f60ec4
|
|
BLAKE2b-256 |
6a816d1bed8a74bd410604adf449a7d66bf354875573308aeda255330f691fec
|