Skip to main content

Python caching library with tag-based invalidation and dogpile effect prevention

Project description

https://badge.fury.io/py/HermesCache.svg

HermesCache

Hermes is a Python caching library. It is designed to fulfil the following requirements:

  • Tag-based cache invalidation

  • Dogpile effect prevention

  • Thread-safety

  • Straightforward design

  • Simple, at the same time, flexible decorator API

  • Interface for implementing custom backends

Implemented backends: redis, memcached, dict.

Installation

pip install HermesCache

For Redis and Memcached it has the following extra dependencies.

HermesCache[redis]

Pure Python Redis client

HermesCache[redis-ext]

Pure Python Redis client & C extension parser

HermesCache[memcached]

Pure Python Memcached client

HermesCache[memcached-ext]

C extension Memcached client

Usage

The following demonstrates all end-user API.

import hermes.backend.redis


cache = hermes.Hermes(hermes.backend.redis.Backend, ttl = 600, host = 'localhost', db = 1)

@cache
def foo(a, b):
  return a * b

class Example:

  @cache(tags = ('math', 'power'), ttl = 1200)
  def bar(self, a, b):
    return a ** b

  @cache(tags = ('math', 'avg'), key = lambda fn, a, b: f'avg:{a}:{b}')
  def baz(self, a, b):
    return (a + b) / 2

print(foo(2, 333))

example = Example()
print(example.bar(2, 10))
print(example.baz(2, 10))

foo.invalidate(2, 333)
example.bar.invalidate(2, 10)
example.baz.invalidate(2, 10)

cache.clean(['math']) # invalidate entries tagged 'math'
cache.clean()         # flush cache

For advanced examples look in the test suite.

Tagging cache entries

First let’s look how basic caching works.

import hermes.backend.dict


cache = hermes.Hermes(hermes.backend.dict.Backend)

@cache
def foo(a, b):
  return a * b

foo(2, 2)
foo(2, 4)

print(cache.backend.dump())
#  {
#    'cache:entry:foo:515d5cb1a98de31d': 8,
#    'cache:entry:foo:a1c97600eac6febb': 4
#                            ↓
#                      argument hash
#  }

Basically we have a key-value storage with O(1) complexity for set, get and delete. This means that the speed of the operations is constant and irrelevant of number of items already stored. When a callable (function or method) is cached, the key is calculated per invocation from callable itself and passed arguments. Callable’s return value is saved to the key. Next invocation we can use the value from cache.

“There are only two hard problems in Computer Science: cache invalidation and naming things.” — Phil Karlton

So it comes in a complex application. There’s a case that certain group of methods operate the same data and it’s impractical to invalidate individual entries. In particular, it often happens when method returns complex values, spanning multiple entities. Cache tagging makes it possible to mark this group of method results with a tag and invalidate them all at once.

To keep invalidation fast here’s an implementation of Eric Florenzano’s idea that he explained in Tagging cache keys for O(1) batch invalidation [6]. Let’s look at the code.

import hermes.backend.dict


cache = hermes.Hermes(hermes.backend.dict.Backend)

@cache(tags = ('tag1', 'tag2'))
def foo(a, b):
  return a * b

foo(2, 2)

print(cache.backend.dump())
#  {
#    'cache:tag:tag1': '0674536f9eb4eb19',
#    'cache:tag:tag2': 'db22b5ab2e504895',
#    'cache:entry:foo:a1c97600eac6febb:c1da510b3d42bad6': 4
#                                              ↓
#                                           tag hash
#  }

When we want to tag a cache entry, first we need to create its tags’ entries. Each tag is represented by its own entry. The value of a tag entry is set to a random value each time tag is created. Once all tags values exist, they are joined and hashed. The tag hash is added to the cache entry key.

Once we want to invalidate tagged entries by a tag, we just need to remove the tag entry. Without any of tag values tag hash was created with, it is impossible to construct the entry key so the tagged cache entries become inaccessible, hence invalidated.

What’s happens with performance? Do all operations become O(n) where n is the number of entry tags? Actually, no. Since we rarely need more than a few dozens of tags, practically it is still O(1). Tag entry operations are batched so the implications on the number of network operations go as follows:

  • set – 3x backend calls (get + 2 * set) in worst case. Average is expected to be 2x when all used tag entries are created.

  • get – 2x backend calls.

  • delete – 2x backend calls.

Memory overhead consists of tag entries and stale cache entries. Demonstrated below.

import hermes.backend.dict


cache = hermes.Hermes(hermes.backend.dict.Backend)

@cache(tags = ('tag1', 'tag2'))
def foo(a, b):
  return a * b

foo(2, 2)

print(cache.backend.dump())
#  {
#    'cache:tag:tag1': '047820ac777abe8a',
#    'cache:tag:tag2': '126365ec7175e851',
#    'cache:entry:foo:a1c97600eac6febb:5cae80f5e7d58329': 4
#  }

cache.clean(['tag1'])
foo(2, 2)

print(cache.backend.dump())
#  {
#    'cache:tag:tag1': '66336fec212def16',  ← recreated tag entry
#    'cache:tag:tag2': '126365ec7175e851',
#    'cache:entry:foo:a1c97600eac6febb:8e7e24cf70c1f0ab': 4,
#    'cache:entry:foo:a1c97600eac6febb:5cae80f5e7d58329': 4  ← garbage
#  }

So the TTLs should be chosen elaborately. With Redis backend it’s also recommended to set maxmemory-policy [1] to volatile-lru.

Backend and client library

This section explains extra dependencies.

Redis

hermes.backend.redis depends on redis [2]. Optionally hiredis [3] can be used to boost Redis protocol parsing. However, hiredis gives significant advantage on big bulk operations and in context of the package improves performance on ~10%.

Memcached

hermes.backend.memcached depends either on pure-python python3-memcached [4] or on, libmemcached wrapper, pylibmc [5]. pylibmc gives ~50% performance improvement.

Dict

hermes.backend.dict is neither complete backend, nor it is suited for distributed use. The original purpose was a development need. And in fact it’s just a wrapper on Python dict. It doesn’t have any memory limiting. Though, it can be used in the limited number of cases where cache size is a priori small.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

HermesCache-0.8.0.tar.gz (19.6 kB view details)

Uploaded Source

File details

Details for the file HermesCache-0.8.0.tar.gz.

File metadata

  • Download URL: HermesCache-0.8.0.tar.gz
  • Upload date:
  • Size: 19.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.5

File hashes

Hashes for HermesCache-0.8.0.tar.gz
Algorithm Hash digest
SHA256 ad2152a0fda9ba69bc93f4918a4c2b0f2ee544e4fa31f30ea0e4826ee793aa18
MD5 4963176e5311eb08f84c4943a8ea7ba6
BLAKE2b-256 61c00b493b7ad677c07ca700f56e983c28e1587437c0c2c72cddb3cedaeaa47c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page