Analysis of High Resolution Data from CERN and DESY beam tests
Project description
HighResAnalysis
The current repository is in development and is not guaranteed to work The working version can be found https://github.com/diamondIPP/HighResAnalysis
Prerequisites
- python>=3.6
- python=3.10 was used for the development
- cmake>=3.7
- optionally cmake GUI, for example ccmake
Installation
- First, install
mamba
. If you do not yet haveconda
install then getting Mambaforge is the recommended way to getmamba
. Here is the instruction for Linux.
curl -L -O "https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh"
bash Mambaforge-Linux-x86_64.sh
If this not the case for you. You can follow the instruction on mamba install page
- Next you can install root. In the root
installation instructions you need
to replace
conda
withmamba
and skip the instructions about the environment, since theMambaforge
already created the defaultbase
environment.
mamba config --set channel_priority strict
mamba install root
mamba install -c conda-forge root
- Install the analysis code:
pip install HighResAnalysys
- Optionally install other useful python packages:
mamba install -c conda-forge scikit-learn numpy pandas
mamba install pyarrow openpyxl xlrd pytables requests sqlalchemy
mamba install -c fastai nbdev
mamba install jupyterlab
mamba install jupyternotebook
mamba install ipython
mamba install notebook
mamba install voila
- For the installation of the software hosted on the GitHub it is useful to make a dedicated folder:
mkdir software
cd software
- And clone all the necessary packages there:
git clone git@github.com:diamondIPP/DRS4-v5-shared.git
git clone git@github.com:diamondIPP/proteus.git
git clone git@github.com:diamondIPP/judith.git
git clone git@github.com:diamondIPP/HVClient.git
git clone git@github.com:diamondIPP/eudaq-2.git
- generate shh keys and copy them to login.phys.ethz.ch
ssh-keygen
ssh-copy-id username@login.phys.ethz.ch
- Clone the analysis setup from GitHub. It contains all the necessary config files:
git clone git@github.com:diamondIPP/setup-analysis.git HighResAnalysis
cd HighResAnalysis/
- To install the converters follow the instructions on the respective pages:
Example analysis of the DESY data
the data need to be frist pre-converted:
>analyse --run=4
you will need to import a couple of libraries. Most of the tools are in
src.dut_analysis
. It will load the data and set all the cuts. The
draw
module from plotting library has some useful functions and
presets that allow plotting histograms and graphs
from HighResAnalysis.src.dut_analysis import *
from HighResAnalysis.plotting.draw import *
Welcome to JupyROOT 6.28/00
Initialize the DUTAnalysis with run number, DUT number, and a string indicating the year and the month of the beam test
run4 = DUTAnalysis(4, 0, '201912')
--- Palette ------ 55
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
STARTING DUT ANALYSIS of D02, run 4 (Dec 2019), 2.50M ev |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
************** Initing Converter *****************
*************** Initing PROTEUS ******************
A small function that allows inline plotting of ROOT histograms
def dc(): get_last_canvas().Draw()
Let’s plot a signal distribution
run4.draw_charge_distribution()
dc()
INFO: 10:34:18 --> Creating directory: /Users/hits/Documents/GitHub/HighResAnalysis/HighResAnalysis/results/201912
INFO: 10:34:18 --> saving plot: SignalDist
WARNING: 10:34:19 --> Diamond server is not mounted in /Users/hits/mounts/high-rate
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for HighResAnalysis-0.0.5-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e1742883d41411c0cfe54bfa33f0507cca67f95e764e0c6ebc97ef45e6abb3c |
|
MD5 | 11cf29090bcedb1e4270f32ce3d61d33 |
|
BLAKE2b-256 | 1ef2b1521f5c391c532b92b90954d60e3ffd8c785bc315712b39d33a2aac3908 |