Skip to main content

PyTorch dataset loader for IRVLUTD Door Handle dataset

Project description

IRVLUTD Door Handle Dataset Loader

This Python package provides a PyTorch dataset loader for the IRVLUTD Door Handle dataset, which includes:

  • Images
  • Depth maps
  • YOLO-style labels

This package simplifies loading and using the dataset in machine learning workflows. It is a part of the iTeach project.

Area Covered

Installation

pip install IRVLUTDDoorHandleDataset

Usage

Once installed, you can use the IRVLUTDDoorHandleDataset class to load dataset in a PyTorch-compatible format:

from IRVLUTDDoorHandleDataset import IRVLUTDDoorHandleDataset

# Path to the dataset root directory
root_dir = '/path/to/the/data'

# Initialize the dataset
dataset = IRVLUTDDoorHandleDataset(root_dir=root_dir) # by default, only images and label dir are read
dataset = IRVLUTDDoorHandleDataset(root_dir=root_dir, use_depth=True) # to use depth dir as well

# Access the first sample in the dataset
sample = dataset[0]

# Access different components of the sample
image = sample['image']
depth = sample['depth']
labels = sample['labels']  # Bounding boxes in YOLO format (cx, cy, w, h)
class_labels = sample['class_labels']  # Class ID and name for each object

print(f"Image Shape: {image.size}")
print(f"Depth Shape: {depth.size}")
print(f"Labels: {labels}")
print(f"Class Labels: {class_labels}")

Dataset Structure

Download dataset from here.

The dataset should follow this structure:

data/
├── images/ (filename.png)
├── labels/ (filename.txt)
├── depth/ (filename_with_depth.png)
└── obj.names  # Contains class names (e.g., Door, Handle)

Each sample in the dataset shares the same filename (excluding the extension) in both the images and labels directories. The iTeach system assumes that all messages received simultaneously belong to the same set and will assign them the same name as required by YOLO. Due to this assumption, please be aware that there may be inconsistencies when using depth data alongside the color samples.

  • Images: RGB images (e.g., image.png)
  • Depth: Depth images (e.g., depth.png)
  • Labels: YOLO format labels (e.g., label.txt) (Dataloader normalized the coordinates in [0-1] range)
  • obj.names: Class names (e.g., Door, Handle)

Note: This dataloader will work with any detection dataset following the above mentioned file structure and having normalized YOLO bbox labels stored in txt files.

License

This project is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irvlutddoorhandledataset-0.0.1.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file irvlutddoorhandledataset-0.0.1.tar.gz.

File metadata

  • Download URL: irvlutddoorhandledataset-0.0.1.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for irvlutddoorhandledataset-0.0.1.tar.gz
Algorithm Hash digest
SHA256 ffa22733526fb8a1233e77f5e8082eb90e4c56599407b7f43c3cdeed757e10b4
MD5 9db730f2168630c57e54da03a1822a41
BLAKE2b-256 cf04adc32e0c46797483ef5e5039eb9b800be99f565f8481761fb9642d3e9205

See more details on using hashes here.

File details

Details for the file IRVLUTDDoorHandleDataset-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: IRVLUTDDoorHandleDataset-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 5.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for IRVLUTDDoorHandleDataset-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e4211d4733f8eb22d33129d961f4c96ba8c10ec34bf988fc4dcbf49e6ac8c5c6
MD5 42649deb76ac85ae3935f486d46911aa
BLAKE2b-256 00294f9aaa3ffb84e71579b0ae241e151b099a60343921685aca4dc00a4ca1ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page