Skip to main content

PyTorch dataset loader for IRVLUTD Door Handle dataset

Project description

IRVLUTD Door Handle Dataset Loader 📦

This Python package provides a PyTorch dataset loader for the IRVLUTD Door Handle dataset, which includes:

  • 🖼️ Images
  • 🌐 Depth maps
  • 🏷️ YOLO-style labels

This package simplifies loading and using the dataset in machine learning workflows. It is a part of the iTeach project.

Area Covered 🌍

Installation ⚙️

pip install IRVLUTDDoorHandleDataset

Usage 📖

Once installed, you can use the IRVLUTDDoorHandleDataset class to load dataset in a PyTorch-compatible format:

from IRVLUTDDoorHandleDataset import IRVLUTDDoorHandleDataset

# Path to the dataset root directory
root_dir = '/path/to/the/data'

# Initialize the dataset
dataset = IRVLUTDDoorHandleDataset(root_dir=root_dir) # by default, only images and label dir are read
dataset = IRVLUTDDoorHandleDataset(root_dir=root_dir, use_depth=True) # to use depth dir as well

# Access the first sample in the dataset
sample = dataset[0]

# Access different components of the sample
image = sample['image']
depth = sample['depth']
labels = sample['labels']  # Bounding boxes in YOLO format (cx, cy, w, h)
class_labels = sample['class_labels']  # Class ID and name for each object

print(f"Image Shape: {image.size}")
print(f"Depth Shape: {depth.size}")
print(f"Labels: {labels}")
print(f"Class Labels: {class_labels}")

Dataset Structure 📂

Download dataset from here.

The dataset should follow this structure:

data/
├── images/ (filename.png)
├── labels/ (filename.txt)
├── depth/ (filename_with_depth.png)
└── obj.names  # Contains class names (e.g., Door, Handle)

Each sample in the dataset shares the same filename (excluding the extension) in both the images and labels directories. The iTeach system assumes that all messages received simultaneously belong to the same set and will assign them the same name as required by YOLO. Due to this assumption, please be aware that there may be inconsistencies when using depth data alongside the color samples.

  • Images: RGB images (e.g., image.png)
  • Depth: Depth images (e.g., depth.png)
  • Labels: YOLO format labels (e.g., label.txt) (Dataloader normalized the coordinates in [0-1] range)
  • obj.names: Class names (e.g., Door, Handle)

Note: This dataloader will work with any detection dataset following the above mentioned file structure and having normalized YOLO bbox labels stored in txt files.

License 📜

This project is licensed under the MIT License.

BibTex 📚

Please cite iTeach if it helps your work or research 🙌:

@misc{padalunkal2024iteach,
    title={iTeach: Interactive Teaching for Robot Perception using Mixed Reality},
    author={Jishnu Jaykumar P and Cole Salvato and Vinaya Bomnale and Jikai Wang and Yu Xiang},
    year={2024},
    eprint={2410.09072},
    archivePrefix={arXiv},
    primaryClass={cs.RO}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

IRVLUTDDoorHandleDataset-0.0.3.tar.gz (5.3 kB view details)

Uploaded Source

Built Distribution

IRVLUTDDoorHandleDataset-0.0.3-py3-none-any.whl (6.0 kB view details)

Uploaded Python 3

File details

Details for the file IRVLUTDDoorHandleDataset-0.0.3.tar.gz.

File metadata

File hashes

Hashes for IRVLUTDDoorHandleDataset-0.0.3.tar.gz
Algorithm Hash digest
SHA256 68a1aa53d28ef3a618dc9a1d12dde140f69c31a7373dba5f56f46bc8924bf393
MD5 fa23deb95775be8efcdbf8136cc60fe1
BLAKE2b-256 795993a8ecc9c62054ad09bdcca490380313f1daf9dfe546e91e4f95c56cf84e

See more details on using hashes here.

File details

Details for the file IRVLUTDDoorHandleDataset-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for IRVLUTDDoorHandleDataset-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 fbb6affd63559c06ff213166f1bd4d5e61c93ab767938458fa7a70f75a09fbd0
MD5 3af426f97d3b6f37df459b3924655754
BLAKE2b-256 0729e63222d544666403b386b193688fadd5d56adb5bc5689ed2013e84184ee9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page