Skip to main content

IntLCA package for integrating emerging technologies in inventory matrices and performing large scale scenario analysis.

Project description

Integrating emerging technologies deployed at scale within prospective life-cycle assessments


๐Ÿ“– Description

The repository contains data files and tailored notebooks and codes to create the LCI database and reproduce the results presented in the article. DOI: https://doi.org/10.1016/j.spc.2024.08.016

Charalambous et al., 2024. Integrating emerging technologies deployed at scale within prospective life-cycle assessments.


๐Ÿ“‚ Repository Structure

โ””โ”€โ”€ Integrated-LCA-master/
    โ”œโ”€โ”€ .gitignore
    โ”œโ”€โ”€ LICENSE
    โ”œโ”€โ”€ Notebooks/
    โ”‚   โ””โ”€โ”€ Setting up/ 
    โ”‚      โ””โ”€โ”€ 01-Setup non-integrated LCA.ipynb
    โ”‚      โ””โ”€โ”€ 02-Setup integrated LCA.ipynb
    โ”‚   โ””โ”€โ”€ Calculations/
    โ”‚      โ””โ”€โ”€ 01-Non-integrated LCA calculation.ipynb
    โ”‚      โ””โ”€โ”€ 02-Integrated LCA calculations.ipynb
    โ”‚   โ””โ”€โ”€ Fetching info/
    โ”‚      โ””โ”€โ”€ 01-Diesel market regional share.py
    โ”‚      โ””โ”€โ”€ 02-Diesel market share.py
    โ”‚      โ””โ”€โ”€ 03-Synthetic diesel market share.py
    โ”‚   โ””โ”€โ”€ Plotting/ 
    โ”‚      โ””โ”€โ”€ 01-Main-manuscript.ipynb
    โ”‚      โ””โ”€โ”€ 02-Supplementary.ipynb
    โ”‚   โ””โ”€โ”€ Examples/
    โ”‚      โ””โ”€โ”€ example_notebook.ipynb
    โ”œโ”€โ”€ Data/
    โ”‚   โ””โ”€โ”€ LCIA/     
    โ”œโ”€โ”€ IntLCA/
    โ”‚   โ”œโ”€โ”€ __init__.py
    โ”‚   โ”œโ”€โ”€ IntLCA.py
    โ”‚   โ””โ”€โ”€ utils/
    โ”œโ”€โ”€ README.md
    โ”œโ”€โ”€ environment.yml
    โ”œโ”€โ”€ graphical_abstract.png

โš™๏ธ Documentation

๐Ÿ“ The Data folder includes:

  • The LCIA folderโ†’ Three excel files that are used for creating or updating the LCIA method.

๐Ÿ“ The Notebooks folder includes:

  • Setting up folder โ†’ Notebooks to create the databases
  • Calculations folder โ†’ Notebooks to calculate LCA impacts
  • Examples folder โ†’ Notebook that shows how to perform integrated LCA with matrices
  • Plotting folder โ†’ Notebooks to plot the LCA impacts
  • Fetcing info folder โ†’ Notebooks to fetch information from the environmental databases

๐Ÿ“ The IntLCA folder โ†’ Includes a package created to perform integrated LCA. The file includes utils folder with all the modules required.


Usage

To ensure the replication of the results presented in the article, it is highly recommended starting a new environment.

1. Set Up the Environment

Using Anaconda, build the environment using environment.yml:

conda env create -f environment.yml

Details on how to use the package are provided in the corresponding notebooks. Reach out if you encounter issues!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

IntLCA-dev-0.1.0.tar.gz (5.8 kB view details)

Uploaded Source

Built Distribution

IntLCA_dev-0.1.0-py3-none-any.whl (6.0 kB view details)

Uploaded Python 3

File details

Details for the file IntLCA-dev-0.1.0.tar.gz.

File metadata

  • Download URL: IntLCA-dev-0.1.0.tar.gz
  • Upload date:
  • Size: 5.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.16

File hashes

Hashes for IntLCA-dev-0.1.0.tar.gz
Algorithm Hash digest
SHA256 d16e7693763d9bc96597dbae9b576fefd403bb22491313488f5a94dbb316a4de
MD5 f55f94a035cb8264b063272dd97fdd34
BLAKE2b-256 bb5746d4f0d6c0bafe9d5f1d8bbaaf850a65238c549f3c1df53f717d0ffbeba2

See more details on using hashes here.

File details

Details for the file IntLCA_dev-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: IntLCA_dev-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 6.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.16

File hashes

Hashes for IntLCA_dev-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4adca4351e112e94749a592154a5daf3fff89b771fdfe275f29fd3c09c873c4d
MD5 fe9dea7f70fe18ea0e8988ae00d6d72c
BLAKE2b-256 4c2a511222355201f484e4e740132799ee5548cb116df6425fedddefcfcb7874

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page