Intrinsic Dimensionality Estimation with idPettis Method
Project description
A package for estimating the intrinsic dimensionality of a dataset. Supports multiple estimation methods including Correlation Dimension, Nearest Neighbor Dimension, Packing Numbers, Geodesic Minimum Spanning Tree, Eigenvalue Analysis, Maximum Likelihood Estimation, and the newly added idPettis method. The idPettis method provides an innovative approach for dimensionality estimation, enhancing the package’s utility and accuracy in analyzing complex datasets.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for IntrinsicDimEstimator-0.3.2.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 156d8bd728ea4964d35307af6b713c1b395f721827e09880966f3b6772149bef |
|
MD5 | 9d37adada92a45af63dddcf9cb02b19e |
|
BLAKE2b-256 | ee52b04453c7d4e5a0dd7478bd7ed6730b17c8996c4b4af9b67614823afc5a25 |
Close
Hashes for IntrinsicDimEstimator-0.3.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6b90fad1e070e5e1380c536865a98d87573802073029965c0f0333857989538e |
|
MD5 | 85fbdc7ca3aea1d9d853ea406a9f0cfb |
|
BLAKE2b-256 | 97f093c2105aad561e50db08d0b9db5c548e7d5738b912f01daf8902a3eeb1ed |