Skip to main content

An implementation of Invariant Point Attention from Deepmind's Alphafold 2

Project description

Invariant Attention Twitter

PyPI Run Tests Upload Python Package Code style: black Open In Colab

GitHub License GitHub stars GitHub followers Twitter Follow

Invariant Point Attention which was used in the structure module of Alphafold2 from the paper Highly accurate protein structure prediction with AlphaFold for coordinate refinement. Invariant Point Attention is a form of attention that acts on a set of frames and is invariant under global Euclidean transformations on said frames.

This repository also includes Invariant Point Attention-based transformer block, which is an Invariant Point Attention followed by a feedforward

Installation

Run the following to install:

pip install invariant-attention

Developing invariant-attention

To install invariant-attention, along with tools you need to develop and test, run the following in your virtualenv:

git clone https://github.com/Rishit-dagli/invariant-attention.git
# or clone your own fork

cd invariant-attention
pip install -e .[dev]

To run rank and shape tests run any of the following:

pytest invariant_attention --verbose

Usage

Running a standalone attention block, we can also use this module without the pairwise representations:

attn = InvariantPointAttention(
    dim=64,  # single (and pairwise) representation dimension
    heads=8,  # number of attention heads
    scalar_key_dim=16,  # scalar query-key dimension
    scalar_value_dim=16,  # scalar value dimension
    point_key_dim=4,  # point query-key dimension
    point_value_dim=4,  # point value dimension
)

single_repr = tf.random.normal((1, 256, 64))  # (batch x seq x dim)
pairwise_repr = tf.random.normal((1, 256, 256, 64))  # (batch x seq x seq x dim)
mask = tf.ones((1, 256), dtype=tf.bool)  # # (batch x seq)

rotations = repeat(
    tf.eye(3), "... -> b n ...", b=1, n=256
)
translations = tf.zeros((1, 256, 3))

attn_out = attn(
    single_repr,
    pairwise_repr,
    rotations=rotations,
    translations=translations,
    mask=mask,
) # (1, 256, 64)

Running an IPABlock (Invariant Point Attention Block) which is an IPA followed by a feedforward and has normalization layers:

block = IPABlock(
    dim=64,
    heads=8,
    scalar_key_dim=16,
    scalar_value_dim=16,
    point_key_dim=4,
    point_value_dim=4,
)

seq = tf.random.normal((1, 256, 64))
pairwise_repr = tf.random.normal((1, 256, 256, 64))
mask = tf.ones((1, 256), dtype=tf.bool)

rotations = repeat(tf.eye(3), "... -> b n ...", b=1, n=256)
translations = tf.zeros((1, 256, 3))

block_out = block(
    seq,
    pairwise_repr=pairwise_repr,
    rotations=rotations,
    translations=translations,
    mask=mask,
)

updates = tf.keras.layers.Dense(6)(block_out)
quaternion_update, translation_update = tf.split(
    updates, num_or_size_splits=2, axis=-1
)  # (1, 256, 3), (1, 256, 3)

Running an IPATransformer which is a stack of IPABlock and feedforward layers:

seq = tf.random.normal((1, 256, 32))
pairwise_repr = tf.random.normal((1, 256, 256, 32))
mask = tf.ones((1, 256), dtype=tf.bool)
translations = tf.zeros((1, 256, 3))

model = IPATransformer(
    dim=32,
    depth=2,
    num_tokens=None,
    predict_points=False,
    detach_rotations=True,
)

outputs = model(
    single_repr=seq,
    translations=translations,
    quaternions=tf.random.normal((1, 256, 4)),
    pairwise_repr=pairwise_repr,
    mask=mask,
) # (1, 256, 32), (1, 256, 3), (1, 256, 4)

Want to Contribute 🙋‍♂️?

Awesome! If you want to contribute to this project, you're always welcome! See Contributing Guidelines. You can also take a look at open issues for getting more information about current or upcoming tasks.

Want to discuss? 💬

Have any questions, doubts or want to present your opinions, views? You're always welcome. You can start discussions.

Citation

@article{jumper2021highly,
  title={Highly accurate protein structure prediction with AlphaFold},
  author={Jumper, John and Evans, Richard and Pritzel, Alexander and Green, Tim and Figurnov, Michael and Ronneberger, Olaf and Tunyasuvunakool, Kathryn and Bates, Russ and {\v{Z}}{\'\i}dek, Augustin and Potapenko, Anna and others},
  journal={Nature},
  volume={596},
  number={7873},
  pages={583--589},
  year={2021},
  publisher={Nature Publishing Group}
}

License

Copyright 2022 Rishit Dagli

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Invariant-Attention-0.1.0.tar.gz (14.7 kB view details)

Uploaded Source

Built Distribution

Invariant_Attention-0.1.0-py3-none-any.whl (15.1 kB view details)

Uploaded Python 3

File details

Details for the file Invariant-Attention-0.1.0.tar.gz.

File metadata

  • Download URL: Invariant-Attention-0.1.0.tar.gz
  • Upload date:
  • Size: 14.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for Invariant-Attention-0.1.0.tar.gz
Algorithm Hash digest
SHA256 c16bb0b8a8ef6128ed1a894abc5581b8eb131cef66c2f2463efa64bf37080b35
MD5 4884cc685ecf4df247e6927475d6f986
BLAKE2b-256 6822300593fe4e208c91b593ba8f74f7f7c7436df0cc8fb63559ecded66adfcf

See more details on using hashes here.

File details

Details for the file Invariant_Attention-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for Invariant_Attention-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 205e83892231482ebb0bc6d193136338896e3eac42502e30b8ba497dc3d26f28
MD5 4a652ac9e67fe78351be9927c11c44d1
BLAKE2b-256 77c69dc310f290c22140b577416b42938861f0b8bf095a1811c3676a3065a063

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page