Skip to main content

JOnTADS: a unified caller for TADs and stripes in Hi-C data

Project description

JOnTADS: a unified caller for TADs and stripes in Hi-C data

JOnTADS is a versatile tool for identifying Topologically Associating Domains (TADs) and stripes in various chromatin conformation capture data, including population Hi-C, single-109 cell Hi-C and micro-C. It allows for easy analysis of Hi-C data across multiple samples and outputs results in a structured format.

Dependencies

pip install numba==0.56.4  
pip install numpy==1.23.5  
pip install scipy==1.12.0  
pip install qpsolvers==2.7.3

Installation

pip install JOnTADS

Usage

Suppose you are at the folder of this README file.

Test Run

Single Sample Run

To identify TADs from a single sample, use the following command:

python JOnTADS.py -F ./data/chr18.csv -O ./results/chr18.csv.tad

Multiple Samples Run

To analyze multiple samples simultaneously, use:

python JOnTADS.py -F ./data/ES_rep1.chr18 ./data/ES_rep2.chr18 ./data/ME_rep1.chr18 ./data/ME_rep2.chr18 ./data/MS_rep1.chr18 ./data/MS_rep2.chr18 ./data/NP_rep1.chr18 ./data/NP_rep2.chr18 ./data/TP_rep1.chr18 ./data/TP_rep2.chr18 -O ./results/ES_rep1.chr18.tad ./results/ES_rep2.chr18.tad ./results/ME_rep1.chr18.tad ./results/ME_rep2.chr18.tad ./results/MS_rep1.chr18.tad ./results/MS_rep2.chr18.tad ./results/NP_rep1.chr18.tad ./results/NP_rep2.chr18.tad ./results/TP_rep1.chr18.tad ./results/TP_rep2.chr18.tad

Stripe Calling

To call stripes in addition to TADs:

python JOnTADS.py -F ./data/chr18.csv -O ./results/chr18.csv.tad --stripe_output ./results/chr18.csv.stripe -C 18 --stripe True

Input and Output Format

Input Format

The input files should be Hi-C contact matrices separated by spaces or commas.

In progress: we are working on supporting supporting additional input formats.

Output Format

The output files contain information about the identified TADs or stripes.

For TAD calling, the output contains four columns:

start, end, TAD score, TAD size

For stripe calling, the output contains six columns

chr, x1, x2, chr, y1, y2

where the stripe extends from (x1, y1) to (x2, y2).

Parameters

  • -F: Input file(s) with Hi-C data.
  • -O: Output file(s) for the detected TADs.
  • -MAXSZ: Maximum size of TADs allowed, default 200.
  • -MINSZ: Minimum size of TADs allowed, default 7.
  • --stripe: Set to True to enable stripe detection.
  • -C: (When `stripe' is set to True) Chromosome number for stripe calling, e.g. 18.
  • --stripe_output: (When `stripe' is set to True) Output file for stripe calling results.

Contact

Feel free to contribute to the project by opening issues or pull requests. Any feedback or suggestions are highly appreciated. Correspondence should be addressed to qunhua.li@psu.edu. You can also contact the maintainer qiuhai.stat@gmail.com.

Happy analyzing your Hi-C data with JOnTADS!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

JOnTADS-0.4.tar.gz (12.3 kB view details)

Uploaded Source

Built Distribution

JOnTADS-0.4-py3-none-any.whl (14.1 kB view details)

Uploaded Python 3

File details

Details for the file JOnTADS-0.4.tar.gz.

File metadata

  • Download URL: JOnTADS-0.4.tar.gz
  • Upload date:
  • Size: 12.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.5

File hashes

Hashes for JOnTADS-0.4.tar.gz
Algorithm Hash digest
SHA256 db3e9100995aff0bbb95f80c9b3e18143a4172cdcd5b0156a89c80e476966fd8
MD5 6a5e244c366703400bd05667b124b83f
BLAKE2b-256 a1a6aea4557ef8e3f9a99f3ab7870d3318b1268ebd629f55beaf139785278d7a

See more details on using hashes here.

File details

Details for the file JOnTADS-0.4-py3-none-any.whl.

File metadata

  • Download URL: JOnTADS-0.4-py3-none-any.whl
  • Upload date:
  • Size: 14.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.5

File hashes

Hashes for JOnTADS-0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 8a3272b8fd754ee77d12ee02bb6b164859dabe92431f889770f0c120f3540a43
MD5 26099ec7b0da90241d847d5330f73964
BLAKE2b-256 c82d78245ea56a980915dd9caccc51f5f472edec75c7cbb72072e4303135b456

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page