Skip to main content

JarvisAI is AI python library

Project description

JarvisAI

Last Updated: 24 January, 2021

  1. What is Jarvis Ai?
  2. Prerequisite
  3. Getting Started- How to use it?
  4. How to contribute?
  5. Future?

1. What is Jarvis AI-

Jarvis AI is a Python Module which is able to perform task like Chatbot, Assistant etc. It provides base functionality for any assistant application. Well, you can contribute on this project to make it more powerful.

Check more details here- https://github.com/Dipeshpal/Jarvis_AI

2. Prerequisite-

  • To use it only Python (> 3.6) is required.
  • To contribute in project: Python is the only prerequisite for basic scripting, Machine Learning and Deep Learning knowledge will help this model to do task like AI-ML. Read How to contribute section of this page.

3. Getting Started (How to use it)-

Install the latest version-

pip install JarvisAI

It will install all the required package automatically.

If anything not install then you can install requirements manually. pip install -r requirements.txt The requirementx.txt can be found here.

https://pypi.org/project/JarvisAI/

Usage and Features-

After installing the library you can import the module-

import JarvisAI
obj = JarvisAI.JarvisAssistant()
response = obj.mic_input()
print(response)

Check this script for more examples- https://github.com/Dipeshpal/Jarvis-Assisant/blob/master/scripts/main.py

Available Methods-

The functionality is cleared by methods name. You can check the code for example. These are the names of available functions you can use after creating JarvisAI's object-

import JarvisAI
obj = JarvisAI.JarvisAssistant()
response = obj.mic_input()
  1. res = obj.mic_input(lang='en')
  2. res = obj.website_opener("facebook")
  3. res = obj.send_mail(sender_email=None, sender_password=None, receiver_email=None, msg="Hello")
  4. res = obj.launch_app("edge")
  5. res = obj.weather(city='Mumbai')
  6. res = obj.news()
  7. res = obj.tell_me(topic='tell me about Taj Mahal')
  8. res = obj.tell_me_time()
  9. res = obj.tell_me_date()
  10. res = obj.shutdown()
  11. res = obj.text2speech(text='Hello, how are you?', lang='en')
  12. res = obj.datasetcreate(dataset_path='datasets', class_name='Demo', haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', eyecascade_path='haarcascade/haarcascade_eye.xml', eye_detect=False, save_face_only=True, no_of_samples=100, width=128, height=128, color_mode=False)
  13. res = obj.face_recognition_train(data_dir='datasets', batch_size=32, img_height=128, img_width=128, epochs=10, model_path='model', pretrained=None, base_model_trainable=False)
  14. res = obj.predict_faces(class_name=None, img_height=128, img_width=128, haarcascade_path='haarcascade/haarcascade_frontalface_default.xml', eyecascade_path='haarcascade/haarcascade_eye.xml', model_path='model', color_mode=False)
  15. res = obj.setup()
  16. res = obj.show_me_my_images()
  17. res= show_google_photos()
  18. res = tell_me_joke(language='en', category='neutral')
  19. res = hot_word_detect(lang='en')

4. How to contribute?

  1. Clone this reop

  2. Create virtual environment in python.

  3. Install requirements from requirements.txt. pip install requirements.txt

  4. Now run, __ init__.py python __init__.py and understand the working.

    Guidelines to add your own scripts / modules- Lets understand the projects structure first-

    JarvisAI:.
    ├───configs
    ├───features
    │   ├─── date_time
    │   │   └───...
    │   └───weather
    │       └───...
    └───...
    

    4.1. All these above things are folders. Lets understand-

    • JarvisAI: Root folder containing all the files

    • features: All the features supported by JarvisAI. This 'features' folder contains the different modules, you can create your own modules. Example of modules- "weather", "setup". These are the two folders inside 'features' directory.

    • __ init__.py: You need to run this file to test it during the production.

    4.2. You can create your own modules in this 'features' directory.

    4.3. Let's create a module and you can learn by example-

    • 4.3.1. We will create a module which will tell us a date and time.

    • 4.3.2. Create a folder (module) name- 'date_time' in features directory.

    • 4.3.3. Create a python script name- 'date_time.py' in 'date_time' folder.

    • 4.3.4. Write this kind of script (you can modify according to your own script). Read comments in script below to understand format-

      'features/date_time/date_time.py' file- Make sure to add docs / comments. Also return value if necessary.

       import datetime  
      
       def date():  
           """  
           Just return date as string  :return: date if success, False if fail  
           """  
           try:  
               date = datetime.datetime.now().strftime("%b %d %Y")  
           except Exception as e:  
               print(e)  
               date = False  
       	return date  
      
      
       def time():  
           """  
       	Just return date as string  :return: time if success, False if fail  
       	"""
       	try:  
               time = datetime.datetime.now().strftime("%H:%M")  
           except Exception as e:  
               print(e)  
               time = False  
       	 return time
      
      
       # you can run and test your script by calling from main
       if __name__ == '__main__':
           response = date()
           print(response)
           response = time()
           print(response)
      
      
    • 4.3.4. Integrate your module to Jarvis AI-

      • Open JarvisAI\JarvisAI\__init__.py

      • Format of this py file-

        # import custom features
        try:
        	import features.date_time.date_time
        except:
        	from .features.date_time import date_time
        
        # integrate your features
        class JarvisAssistant:  
            def __init__(self):  
                pass
        	def tell_me_date(self):  
        		return date_time.date()  
        
        	def tell_me_time(self):  
        		return date_time.time()
        
        # test your features from main
        if __name__ == '__main__':  
            obj = JarvisAssistant()		
            res = obj.tell_me_time()  
        	print(res)
        	res = obj.tell_me_date()
        	print(res)
        
        

4.4. That's it, if you applied all the things as per as guidelines then now just run __ init__.py it should works fine.

4.5. Push the repo, we will test it. If found working and good then it will be added to next PyPi version.

Next time you can import your created function from JarvisAI Example: import JarvisAI.tell_me_date

5. Future?

Lots of possibilities, GUI, Integrate with GPT-3, support for android, IOT, Home Automation, APIs, as pip package etc.

FAQs for Contributors-

  1. What I can install? Ans: You can install any library you want in your module, make sure it is opensource and compatible with win/linux/mac.

  2. Code format? Ans: Read the example above. And make sure your code is compatible with win/linux/mac.

  3. What should I not change? Ans: Existing code.

  4. Credits- Ans: You will definitely get credit for your contribution.

  5. Note- Ans: Once you created your module, test it with different environment (windows / linux). Make sure the quality of code because your features will get added to the JarvisAI and publish as PyPi project.

  6. Help / Contact? Ans. Contact me on any of my social media or Email.

Let's make it big.

Feel free to use my code, don't forget to mention credit. All the contributors will get credits in this repo.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

JarvisAI-0.2.5.tar.gz (14.9 kB view details)

Uploaded Source

Built Distribution

JarvisAI-0.2.5-py3-none-any.whl (27.3 kB view details)

Uploaded Python 3

File details

Details for the file JarvisAI-0.2.5.tar.gz.

File metadata

  • Download URL: JarvisAI-0.2.5.tar.gz
  • Upload date:
  • Size: 14.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for JarvisAI-0.2.5.tar.gz
Algorithm Hash digest
SHA256 736c4fe12ea95a7825e97dd2f8213760a7d908fb5196f5bd2a995af48ed99cb0
MD5 11805c318af3a4fa9db4648ab8cfbbae
BLAKE2b-256 7755e9f9a3e372ae9c9491ced014a239898ff0bd6d45ca0923ee55d6f6320a4d

See more details on using hashes here.

File details

Details for the file JarvisAI-0.2.5-py3-none-any.whl.

File metadata

  • Download URL: JarvisAI-0.2.5-py3-none-any.whl
  • Upload date:
  • Size: 27.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.6

File hashes

Hashes for JarvisAI-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 4829de84525e3750b88a410643b5ed57744572b5f4d51a926fa34cefce46447d
MD5 e9f264e8907a99225a12e0c3de9005e1
BLAKE2b-256 72924067e5d516f20d4794bf6cf1072ef2418d9fd535f03ddde87da267a6a85d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page