Skip to main content

Package To Convert Json Files To PascalVOC XML files

Project description

Json2PascalVoc

Json2PascalVoc is a Python library for converting some special Json strings to PascalVOC format XML files.

Installation

Use the package manager pip to install Json2PascalVoc.

pip install Json2PascalVoc

Or download package from GitHub

Usage

from Json2PascalVoc.Converter import Converter

myConverter = Converter()
# returns a Converter Object
myConverter.convertJsonToPascal("data.json")
# Converts Json to PascalVOC XML and saves the XML file to the related file path

An example data.json file is :

{
   "data":[
      {
         "annotation":{
            "folder":"class1",
            "filename":"_ADC0362.jpg",
            "path":"~/Desktop/Dev/data/foo/train/class1/_ADC0362.jpg",
            "source":{
               "database":"Unknown"
            },
            "size":{
               "width":1500,
               "height":1500,
               "depth":3
            },
            "segmented":0,
            "object":[
               {
                  "name":"class1",
                  "pose":"Unspecified",
                  "truncated":0,
                  "difficult":0,
                  "bndbox":{
                     "xmin":579,
                     "ymin":584,
                     "xmax":924,
                     "ymax":1120
                  }
               },
               {
                  "name":"class1",
                  "pose":"Unspecified",
                  "truncated":0,
                  "difficult":0,
                  "bndbox":{
                     "xmin":120,
                     "ymin":400,
                     "xmax":1150,
                     "ymax":800
                  }
               }

            ]
         }
      },
      {
         "annotation":{
            "folder":"class1",
            "filename":"_ADC0373.jpg",
            "path":"~/Desktop/Dev/data/foo/train/class1/_ADC0373.jpg",
            "source":{
               "database":"Unknown"
            },
            "size":{
               "width":1500,
               "height":1500,
               "depth":3
            },
            "segmented":0,
            "object":[
               {
                  "name":"class1",
                  "pose":"Unspecified",
                  "truncated":0,
                  "difficult":0,
                  "bndbox":{
                     "xmin":487,
                     "ymin":558,
                     "xmax":798,
                     "ymax":942
                  }
               }
            ]
         }
      }
   ]
}

Notes:

1- "data" array of Json can contain multiple "annotation" objects for different images.

2- "annotation" objects can contain multiple "object" attributes for multi object detecting in a single image.

3- PascalVOC formatted XML files are saved to the path that is given in "annotation.path" for each image/"annotation"

The output XML for an image is like :

<?xml version="1.0" encoding="UTF-8"?>
<annotation>
   <folder name="folder">class1</folder>
   <filename name="filename">_ADC0362.jpg</filename>
   <path name="path">~/Desktop/Dev/data/foo/train/class1/_ADC0362.jpg</path>
   <source>
      <database name="database">Unknown</database>
   </source>
   <size>
      <width name="width">1500</width>
      <height name="height">1500</height>
      <depth name="depth">3</depth>
   </size>
   <segmented name="segmented">0</segmented>
   <object>
      <name name="name">class1</name>
      <pose name="pose">Unspecified</pose>
      <truncated name="truncated">0</truncated>
      <difficult name="difficult">0</difficult>
      <bndbox>
         <xmin name="xmin">579</xmin>
         <ymin name="ymin">584</ymin>
         <xmax name="xmax">924</xmax>
         <ymax name="ymax">1120</ymax>
      </bndbox>
   </object>
   <object>
      <name name="name">class1</name>
      <pose name="pose">Unspecified</pose>
      <truncated name="truncated">0</truncated>
      <difficult name="difficult">0</difficult>
      <bndbox>
         <xmin name="xmin">120</xmin>
         <ymin name="ymin">400</ymin>
         <xmax name="xmax">1150</xmax>
         <ymax name="ymax">800</ymax>
      </bndbox>
   </object>
</annotation>

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Json2PascalVoc-1.0.5.tar.gz (3.7 kB view details)

Uploaded Source

Built Distribution

Json2PascalVoc-1.0.5-py3-none-any.whl (4.6 kB view details)

Uploaded Python 3

File details

Details for the file Json2PascalVoc-1.0.5.tar.gz.

File metadata

  • Download URL: Json2PascalVoc-1.0.5.tar.gz
  • Upload date:
  • Size: 3.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.7

File hashes

Hashes for Json2PascalVoc-1.0.5.tar.gz
Algorithm Hash digest
SHA256 e87caf0ce1a71b50f736af11a13fd4af02ad01fc9c828408d0f42be6a82e62e9
MD5 70b8de506fb7fc06a8316dcc8b003ca4
BLAKE2b-256 87811d8269fa7de83e0e41ad6c472e0685ef1999a5c7b2f4ba9bef50caecf443

See more details on using hashes here.

File details

Details for the file Json2PascalVoc-1.0.5-py3-none-any.whl.

File metadata

  • Download URL: Json2PascalVoc-1.0.5-py3-none-any.whl
  • Upload date:
  • Size: 4.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.7

File hashes

Hashes for Json2PascalVoc-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 cdd6a8492f2fee9abe33add1a4141f98a70a8d16bc22c730a13676abafe5e889
MD5 dcacfdbd551e520c26b7f8728c79aced
BLAKE2b-256 20f53470346ea7ce131200a6b18161e457a53bee239c5a958b2839028f6d7afe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page